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Maguey, Agave salmiana, is an important plant for the “pulque” beverage and functional
food industries; however, it has several constraints for elite and homogeneous plant
production. In this study, a micropropagation process was established to generate
in vitro plants. The effect of the method on metabolite content and antioxidant
(AOX) activity in regenerated plants was evaluated. Young germinated plantlets
were micropropagated from axillary shoots using Murashige and Skoog medium
supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L
6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic
acids, total saponins, and AOX activity of the methanol fraction were determined in
wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The
results showed that IN plants have a 50% lower soluble sugar content compared to WT,
and EN. The total phenolic acids content was at least 30% higher in micropropagated
(IN) and regenerated (EN) plants compared to WT. The total saponin content in IN,
and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of
IN plants was on average three times higher compared to other treatments. However,
no correlation was found between the AOX activity and total phenolic acids or total
saponins. A negative and significant correlation (r = –0.927; p = 0.003) was found
between the AOX activity and the total soluble sugars content. Micropropagated plants
of A. salmiana have a different phytochemical content and bioactivity after the in vitro
process compared to WT plants. The micropropagation process could be used as a
platform for phytochemical enhancement of Agave plants.

Keywords: Agave salmiana, micropropagation, axillary shoots, antioxidant activity, nutraceutic

INTRODUCTION

Agaves are succulent plants native to Mexico, the southwest region of the USA, Central America,
and the Canary Islands. Approximately 75% of the species can be found in Mexico, but 74% of
these are endemic (Martínez-Salvador et al., 2005). The Agave species that produce major revenue
in Mexico belong to magueys “pulque”. This group is represented by the Agave americana, A.
atrovirens, A. mapisaga, and A. salmiana species (Ortiz-Basurto et al., 2008). The production of
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these plants in Mexico accounts for 3,681 ha with a possible
potential commercial value of USD $100 million.

Agave salmiana plants have sexual and asexual reproduction
strategies (Arizaga and Ezcurra, 2002). Maturity for sexual
reproduction occurs at 10 years of age (Narváez-Zapata
and Sánchez-Teyer, 2009), and asexual reproduction occurs
in plants at 5 years of age. Rhizome propagation is the
most common method for establishing commercial agave
plantations (Arizaga and Ezcurra, 2002). However, the lack of
sexual reproduction and the generation of clones by rhizome
propagation result in very poor genetic variability in agave
populations, and genetic improvement of the plant is a very
difficult problem to solve (Flores-Benítez et al., 2007). The use
of in vitro micropropagation has several advantages, such as
obtaining populations with elite characteristics, stress tolerance,
freedom from pathogens, and stable genetic backgrounds
(Domínguez-Rosales et al., 2008). This technique also can
provide material for crop improvement using molecular breeding
tools (Flores-Benítez et al., 2007). Several studies of A. salmiana
micropropagation that emphasize the economic and agricultural
sustainability and preservation of its diversity have been
published (Silos-Espino et al., 2007; Ramírez-Malagón et al.,
2008)

Furthermore, agave nutritional properties have been
widely documented (Silos-Espino et al., 2007). For example,
carbohydrates are one of the most important metabolites for
the Agave agroindustry (Mancilla-Margalli and López, 2006;
Michel-Cuello et al., 2008; Arrizon et al., 2010) due to high
accumulation of carbohydrates in the form of fructans, which are
mainly composed of sucrose, fructose, and glucose (Mancilla-
Margalli and López, 2006). From a nutraceutical point of view,
recent reports have highlighted that Agave and its by-products
have bioactivity due to the content of different metabolites, such
as “aguamiel”, the sap of the plant, which contains fructans and
saponins (Santos-Zea et al., 2012; Leal-Díaz et al., 2015). The
phytochemicals found in Agave include phenolic compounds,
such as kaempferol and quercetin, in various glycosylated forms
(Almaráz-Abarca et al., 2013; Barriada-Bernal et al., 2014), and
saponins, as glycosides of hecogenin, diosgenin, chlorogenin,
kammogenin, and gentrogenin (Yokosuka and Mimaki, 2007;
Pérez et al., 2014). Previous studies have reported an increase
in bioactivity of diverse micropropagated plants compared to
wild-type (WT) plants (García-Pérez et al., 2012; Dakah et al.,
2014), suggesting that the micropropagation of A. salmiana
could result in this advantage.

Therefore, in this study, a micropropagation process was
established to generate in vitro plants of magueyA. salmiana, and
evaluate the effect of this process in terms of total soluble sugars,
total phenolic acids, total saponins and antioxidant (AOX)
activity in comparison to plants grown from wild populations.

MATERIALS AND METHODS

Plant Material
Agave salmiana seeds and plants were provided by the Agmel
SA de CV Company (Monterrey, NL, Mexico). The plants and

seeds were collected in October 2012, after the rainy season in
a commercial plantation. Seeds were taken from dehiscent fruits
and germinated in the first 6 months after collection. Selected
plants were pathogen and disease-free, and accomplished the
standards established for commercial purpose. Two specimens
were collected from a 1-year-old plant from a natural population
located in the field at Ejido Puebla, Saltillo, Coahuila, Mexico
(25◦24′54′′N; 101◦18′11′′O; 1442 meters above sea level); the
average relative humidity (RH) was 57%, with a precipitation of
16.26 mm during the month. The average temperature registered
was 20.5◦C, with maximum of 28.8◦C and minimum of 10.8◦C.
For further analysis, the third leaf of each plant was taken as
control tissue from WT plants.

In Vitro Seed Germination
In order to establish an optimal germination protocol for further
micropropagation the A. salmiana seeds were germinated. The
seeds were surface-disinfected by soaking them in distilled
water containing 1.5% (v/v) of commercial liquid soap and
200 µL of Tween 20 R© (Sigma–Aldrich, St. Louis, MO, USA),
for 2 min. Then they were washed with distilled water for
5 min and placed in a solution of 50% (v/v) commercial
bleach (Cloralex R©, 5.25% w/w, Monterrey, NL, Mexico) for
15 min. The seeds were then submerged in 96% ethanol for
2 min and washed with distilled water. For the germination
test, the seeds were divided into four treatment groups: no
scarification, chemical scarification, mechanical scarification, and
a combination of mechanical and chemical scarification, to
determine the optimal method according to the International
Seed Testing Association (International seed testing association,
2004). Chemical scarification was conducted by submerging the
seeds in H2SO4 for 1 sec and rinsing immediately with sterile
water. Mechanical scarification entailed using a knife to cut the
area close to the seed micropyle. Then, groups of 100 seeds were
cultivated in jars with 20 mL of freshly prepared Murashige and
Skoog (MS) 1:10 w/w (Bairu et al., 2009) solid culture medium
at a density of five seeds per jar. The cultures were transferred
to an environmental chamber, (Sheldon Manufacturing, Inc.,
Cornelius, OR) set to 27◦C with a photoperiod of 12:12 (12 h
of light at 6600 lux and 12 h of dark). Light intensity was set
up to 6600 lux (Light meter Model 3251 Traceable R©, Control
Company, Friendswood, TX, USA). The optimal treatment with
a maximal number of seeds germinated was selected for further
micropropagation processing.

Optimal In Vitro Growth Conditions for
Multiplication
Three-week-old plantlets obtained from the in vitro germinated
seed were multiplied using the axillary shoot method (Santacruz-
Ruvalcaba et al., 1999). After removing the roots, one single
plant per jar was cultured with 20 mL of solid freshly prepared
MS culture medium modified with L2 vitamins (MS + L2)
(Santacruz-Ruvalcaba et al., 1999). After 2 weeks, combinations
of 6-benzylaminopurine (BAP; Sigma–Aldrich, St Louis, MO,
USA; 0.5, 1.0, 5.0, and 10.0 mg/L) and 2,4-dichlorophenoxyacetic
acid (2,4-D; Sigma–Aldrich, St Louis, MO, USA; 0.01, 0.025,
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and 0.04 mg/L) were added to new MS + L2 solid culture
medium to identify the optimal concentration for growth, and
the highest multiplication rate (Santacruz-Ruvalcaba et al., 1999).
All culture media contained 30 g/L sucrose (Sigma–Aldrich) and
4 g/L Phytagel R© (Sigma–Aldrich). The pHwas adjusted to 5.8 and
plant growth regulators were added before autoclaving (20 min at
1 atm and 121◦C). The cultures were transferred to a chamber
with the temperature set to 27◦C and a photoperiod of 16:8 h
light:dark (6600 lux). Axillary shoots and the presence of a callus
were quantified after 60 days (Santacruz-Ruvalcaba et al., 1999).
The optimal plant growth regulator concentration allowing the
maximum number of axillary shoots was selected for further
multiplication. Once the plantlets were multiplied, they were
placed in acclimatization medium free of plant growth regulators
for 30 days for root growth.

Acclimatization
Rooted plants were removed from the culture medium and
placed in trays with a wet soil mixture of 7:3 (v/v) peat moss
and vermiculite (Cosmopeat and Cosmocel; Monterrey, NL,
Mexico); the soil was mixed with a granular fertilizer (Osmocote
Classic, Scotts, CA Geldermalsen). The plants were subsequently
transferred and maintained at 34◦C and 95% RH for 1 week,
after which the RH was adjusted manually to 34% for another
week. After acclimatization, plants produced in vitro were grown
at the nursery facilities of Tecnológico de Monterrey, Monterrey,
NL, Mexico (25◦38′43. 93′′N; 100◦17′01. 07′′O; 532 meters
above sea level) using standard agronomic practices for WT
succulent plants. Plants were exposed to open environment
conditions during March of 2013, with a RH 49.2%, 15.5 mm
of precipitation, and an average temperature of 20.4◦C, with
maximum of 28.9◦C, and minimum of 14.4◦C. The survival rate
of the plants was calculated after 1 month.

Preparation of Plant Samples
Leaf tissue samples were taken from the in vitro (IN) plants
obtained from the multiplication step, ex vitro acclimated plants
obtained from open environment conditions (EN), and WT
plants obtained from a natural population, recollected after rainy
season. All samples were stored at –80◦C overnight and then
lyophilized. The dried leaf tissue was ground using a mixer
ball mill (MM 400; Retsch/Verder Scientific, Col. Germany) and
stored at –20◦C for analysis.

Quantification of Total Soluble Sugars
For the extraction of soluble sugar dried leaf tissue (100 mg) was
homogenized using 1 mL of distilled water. The samples were
placed in a shaking incubator (VorTemp 1550, Labnet Int. Inc.,
Edison, NJ, USA) for 7 h at 70◦C and 150 rpm. The extracts
were centrifuged at 5000 rpm for 5 min and the supernatant
was vacuum dried and re-suspended in 1 mL of water (Arrizon
et al., 2010). Reducing sugars were quantified following the DNS
protocol modified by King et al. (2009). Briefly, in a 96-well
microplate, 60µL of samples and standards (glucose) were placed
in wells in triplicate. Then, 120 µL of DNS reagent was added.
The microplate was placed in a shaking incubator (VorTemp
1550, Labnet Int. Inc., Edison, NJ) for 15 min at 95◦C and

150 rpm. The reaction was stopped by placing the microplate at
4◦C for 5 min and the absorbance was measured at 540 nm. The
results were expressed as mg of dextrose equivalents (DE) per g
of dry weight (dw).

Phenolic Acids and Saponins Extraction
One hundred milligram of dried leaf tissue was homogenized
for the extraction using 1 mL of a methanol–water 80:20
(v/v) solution. The extract was placed in a shaking incubator
(VorTemp 1550; Labnet Int. Inc., Edison, NJ, USA) for 2 h at
150 rpm and 30◦C; then, it was centrifuged at 3000 rpm for
5 min. The supernatant was vacuum dried, suspended in 1 mL
methanol–water 50:50 (v/v), and used for the analysis of total
phenolic acids, total saponins, and AOX activity (García-Pérez
et al., 2012).

Total Phenolic Acids Quantification
Total phenolic acids concentration was determined using Folin–
Ciocalteu reagent and gallic acid as a standard according to the
method of García-Pérez et al. (2012). Samples (20 µL) were
introduced into a microplate, after which 100 µL of 10% of the
Folin–Ciocalteu reagent and 80 µL of Na2CO3 7.5% (w/v) were
added. After incubating for 1.5 h at 30◦C, the absorbance was
measured at 765 nm using a microplate reader (SynergyTM HT
Multi-Detection; BioTek Inc., Winooski, VT, USA). The results
were expressed asmg of gallic acid equivalents (GAE) per g of dw.

Total Saponins Quantification
Total saponins were quantified as protodioscin equivalents (PE;
Sigma–Aldrich, St. Louis, MO, USA) as detected by HPLC-
ELSD (Agilent Technologies, 1200 series, Santa Clara, CA, USA,
evaporative light scattering detector) with a Zorbax Eclipse XDB-
C18, 4.6 mm × 150 mm (5 µm) column (Agilent Technologies,
Santa Clara, CA, USA) using nitrogen as the drying gas, pressure
at 3.8 bar and tube temperature of 45◦C, as previously reported
(Leal-Díaz et al., 2015). A gradient elution proposed by Leal-
Díaz et al. (2015) was improved to enhance the resolution of
saponins. Briefly, the program consisted of phase A (water and
0.1% formic acid) and phase B (acetonitrile with 0.1% formic
acid) at a flow rate of 0.8 mL/min. The gradient was as follows:
82% of phase A wasmaintained during the first 15min; decreased
to 25% over 10 min; maintained for 5 min before reducing to
0% over 10 min; and maintained at 100% B for the last 10 min.
The data were collected and analyzed by “Chem Station for LC
3D systems” (Agilent Technologies R© , Santa Clara, CA, USA),
provided with the equipment. The standard curve of protodioscin
was constructed from 10 to 500 ppm and the content was
determined using the area under the curve of peaks.

Antioxidant Activity of Plant Extracts
Antioxidant activity was determined using the oxygen radical
absorbance capacity assay. Extracts were evaluated following
the method described by García-Pérez et al. (2012), using a
standard of trolox (Sigma–Aldrich) with fluorescein (Sigma–
Aldrich). Peroxyl radicals were generated by adding 2,2′-azobis
(2-amidinopropane) dihydrochloride (Sigma–Aldrich), and the
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fluorescence loss signal was monitored in a microplate reader.
The absorbance of excitation and emission were set at 485 and
538 nm, respectively. The results were expressed as µmol of
trolox equivalents (TE) per g dw.

Statistical Analysis
For the micropropagation protocol, a 4 × 5 factorial design was
used to obtain the maximal number of shoots. Germination,
total shoots, total soluble sugars content, total phenolic acids
content, total saponins content, and AOX activity capacity
analysis were subjected to analysis of variance and Pearson
correlation analysis using the statistical software Minitab 16.
Differences among means were compared with Tukey’s tests
at p < 0.05. Correlation analyses were performed for the
primary phytochemical compounds bioactivity at different levels
of p.

RESULTS

Optimal Germination and Growth
Conditions
Agave salmiana seeds were germinated in vitro, establishing
an optimal protocol for further micropropagation. Four seed
treatments were evaluated. A combination of mechanical and
chemical scarification had a germination rate of 93% after 11 days
of imbibition. However, no significant difference was found in
comparison with the seeds treated with mechanical scarification,
which had a 90% germination rate after 4 days of imbibition. No
scarification had a rate of 3%, while only chemical scarification
had the lowest rate of germination (0%).

In Vitro Multiplication and
Micropropagation Process
After seed germination of A. salmiana, an improved
micropropagation protocol was established to regenerate

plants using both BAP and 2,4-D as plant growth regulators.
Table 1 summarizes the results of axillary shoot generation.
The optimal combination of these plant growth regulators
to produce the highest number of axillary shoots occurred
when a ratio of 250 parts BAP to 1 part 2,4-D was maintained
In the absence of 2,4-D, an increase in the concentration of
BAP had no significant effect on the offshoot generation. At
the highest concentration of 2,4-D, the generation of axillary
shoots was totally inhibited. The proposed protocol allows the
regeneration of whole plants from WT genotypes in 16 weeks
using germinated young plantlets (Figure 1). In the first stage,
the germinated seeds were established (Figure 1a), and after
2 weeks, when the plantlets reached 2–3 cm (Figure 1b),
they were transferred to MS + L2 medium after removing
the roots (Figure 1c). After 60 days in MS + L2 medium
and plant growth regulators, the plantlets generated axillary
shoots that could easily be identified and separated easily for
further multiplication (Figure 1d). Spontaneous rooting was
observed in 100% of axillary buds established in plant growth
regulator-free MS + L2 medium after 30 days (Figure 1e).
Acclimatization of the rooting plants was achieved after

TABLE 1 | Number of axillary shoots generated after 60 days using a
combination of 2,4-D and BAP under in vitro conditions by the axillary
shoots generation technique.

BAP
(mg/L)

2,4-D (mg/L)

0.00 0.01 0.02 0.04

0.0 0.66 ± 0.57 fg∗ 0.25 ± 0.50 fg 0.00 ± 0.00 g 1.66 ± 1.52 fg

0.5 3.00 ± 1.00 defg 2.75 ± 0.95 efg 0.00 ± 0.00 g 0.00 ± 0.00 g

1.0 1.33 ± 0.57 fg 2.66 ± 1.15 efg 2.33 ± 1.15 efg 0.33 ± 0.57 fg

5.0 2.33 ± 0.57 efg 6.00 ± 2.10 cde 10.33 ± 0.57 ab 0.00 ± 0.00 g

10.0 3.50 ± 2.74 ef 2.00 ± 1.41 efg 7.33 ± 1.15 bcd 14.00 ± 0.70 a

∗Different letter(s) denote statistically significant differences at p < 0.05. BAP,
6-benzylaminopurine. 2,4-D, 2,4-dichlorophenoxyacetic acid.

FIGURE 1 | Micropropagation steps in Agave salmiana. (a) Seeds germinated in vitro. The seeds were taken from a mature plant bearing an inflorescence,
bar = 1 cm; (b) One-week old plantlet from seed, bar = 2.5 cm; (c) Initial shoot-tip culture after germination, bar = 1 cm; (d) Axillary shoots induction response of
explants, bar = 5 cm; (e) Multiplication and rooting of axillary buds, bar = 5 cm; (f) Acclimatization, bar = 5 cm.
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FIGURE 2 | Comparison of Agave salmiana plants analyzed. (A) Wild-type plant (WT, bar = 5 cm); (B) In vitro generated plant (IN, bar = 1 cm); (C) Ex vitro
acclimated (EN, bar = 1 cm).

2 weeks (Figure 1f), with a 90% survival rate of the transferred
plants.

With this micropropagation process, plant tissues were
collected from three major steps: (1) in vitro (IN, Figure 2B)
plants obtained from the tissue culture laboratory at the
multiplication step, (2) ex vitro plants obtained after
acclimatization step (EN, Figure 2C), and (3) WT plants
(WT, Figure 2A) obtained from a natural population.

Quantification of Sugars,
Phytochemicals, and Antioxidant Activity
An aqueous plant tissue extract was used to evaluate the content
of total soluble sugars (Figure 3). A significant difference

(P < 0.05) in the content of soluble sugars was observed between
themicropropagation process steps. Two groups of response were
identified: WT and EN (129 and 127 mg DE/g dw, respectively)
and IN (64 mg DE/g dw) with a significant difference. Compared
with WT and EN, the IN plants contained 50% less of the total
reducing sugars.

The total phenolic acids content in WT, IN, and EN
A. salmiana plants is presented in Figure 3. There were
significant differences (P < 0.05) between the micropropagated
and regenerated plants, compared with WT plants. The range of
total phenolic acids content varied between 7 to 11 mg GAE/g
dw. The IN and EN plants had the highest phenolic acids content
(11.8 and 10.8 mg GAE/g dw). The WT plants showed the lowest

FIGURE 3 | Total soluble sugars, phenolic acids, saponin content and antioxidant activity of Agave salmiana extracts from WT, an in vitro
environment (IN), and ex vitro acclimated plant (EN). Values expressed on a dry basis.
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phenolic acids content, with 7.0 mg GAE/g dw. Compared with
WT, there was an increase of 35 and 40% in the phenolic acids
content in the IN, and EN plants, respectively.

Total saponins content was quantified from the methanolic
extracts, and the results are presented in Figure 3. The saponin
content showed significant differences (P < 0.05) between plants
resulting from the micropropagation process. The lowest saponin
content was observed in WT plants (2.1 mg PE/g dw). In
contrast, IN and EN plants had the highest total saponin content
(77.1, 63.3 mg PE/g dw, respectively). Micropropagated and
regenerated plants (IN and EN) showed an increase of 36 and 29
times in saponin contents compared with the WT plants.

Quantification of the AOX activity was performed using the
methanolic extract where total phenolic acids and saponins
were quantified (Figure 3). The AOX activity was significantly
different among plants from different micropropagation steps
(P < 0.05). Plants from IN showed the highest AOX activity
(369µmol TE/g dw), followed by EN andWT, (184 and 146µmol
TE/g dw, respectively). Direct comparisons of IN with EN and
WT showed that AOX activity was 2.5-fold and 2.8-fold higher,
respectively.

Pearson correlation analysis showed a lack of correlation
betweenAOX activity with total phenolic acids and total saponins
(r = 0.327, p = 0.475; r = 0.600, p = 0.154, respectively).
A negative relation was found between AOX activity and the total
soluble sugar content (r = –0.927, p = 0.003).

DISCUSSION

In Vitro Seed Germination
Poor rates of seed germination have been observed in agave
fields in the north of Mexico (Vázquez-Díaz et al., 2011).
Although agave seeds have low availability and low viability,
Ramírez-Tobías et al. (2011) determined that seedlings are 50%
more vigorous than those obtained by offshoots and therefore
seed generated plants have advantages. This study presents an
alternative germination protocol to that proposed by Ramírez-
Tobías et al. (2011), although they achieved a germination rate
of 90% after 3 days of imbibition at 25◦C, it was necessary to
address the poorer seed quality of seed obtained from plants in
the north of Mexico in order to generate enough plantlets for
the micropropagation process. Seeds of A. salmiana collected
in Nuevo Leon, Mexico for this study also presented low
levels of germination (3%). In this study the use of mechanical
scarification was optimal to produce a high number of plantlets
with a 90% germination after 4 days, comparable with the results
of Ramírez-Tobías et al. (2011) without treatment. Variations in
the rate of germination have been attributed to the lack of seed
dormancy (Ramírez-Tobías et al., 2011), or related to the use of
sand versus culture media. The need for seed treatment revealed
in this study has also been associated with geographic origin,
genetic variance, and storage conditions.

Optimal In Vitro Multiplication
In the Agavaceae family, several improved methods for plant
micropropagation have been reported. Compared with those

studies, the micropropagation process presented in this study for
A. salmiana is more efficient in terms of time for regeneration
compared with the study by Ramírez-Malagón et al. (2008)
for A. tequilana and Santacruz-Ruvalcaba et al. (1999) for
A. parrasana Berger.

The use of 2,4-D and BAP is common for generating
axillary shoots in different species, such as A. parrasana Berger
(Santacruz-Ruvalcaba et al., 1999) and A. tequilana (Ramírez-
Malagón et al., 2008). However, previous studies have also
reported controversial results regarding the use of auxins
in the production of axillary buds in the Agavaceae family:
e.g., A. parrasana by Santacruz-Ruvalcaba et al. (1999), and
A. Americana by Chen et al. (2014). In this study, a combination
of 2,4-D and BAP generated a high number of axillary shoots
without an observed negative effect.

Compared with other strategies of micropropagation for
A. salmiana axillary shoots, the method was 79% more efficient
in the plants produced than reported by Ramírez-Malagón
et al. (2008) for the same time period. Micropropagation
comparisons reveal differences in terms of the type of explant
used. For example, using cambium meristem or cylindrical
core in A. salmiana, Silos-Espino et al. (2007) obtained
a yield of 20 axillary shoots in 45 days, which is 30%
more efficient than the current study. These differences are
attributed to the seed-plantlets used in this study as the
main explant, as observed by Zhang et al. (2013), where the
explant and variety used had a direct impact on the shoot
efficiency.

Surprisingly, the spontaneous rooting observed in this study
is contrary to the results reported by Silos-Espino et al. (2007)
for A. salmiana, in which 0.2 mg/L of IAA was necessary to
generate a complete root system in 45 days. This response is
common in Agave species and confirmed that A. salmiana does
not require auxins to produce roots, similar to A. parrasana
Berger (Santacruz-Ruvalcaba et al., 1999) and A. hybrid No.
11648 (Zhang et al., 2013). Additionally, the spontaneous rooting
might be due the absence of BAP and its derivative because the
presence of cytokinins inhibits the formation of roots and correct
development of plants during the acclimatization process (Aremu
et al., 2015).MostAgave species have high survival rates (80–98%)
after acclimatization (Silos-Espino et al., 2007; Zhang et al., 2013;
Chen et al., 2014). Based on these results, this study supports
the massive use of seeds in the micropropagation of A. salmiana,
which has been previously demonstrated to ensure large numbers
of specimens, genetic variability generation, diversity, sanitation,
and stable genetics (Portillo et al., 2007).

Sugar and Phytochemicals in the
Micropropagation Process
Soluble carbohydrates such as fructose and glucose are the
main source of energy in Agave sp. and are obtained by the
hydrolysis of sucrose by the enzyme invertase (Michel-Cuello
et al., 2008). Total soluble sugars in WT and ex vitro plants
of A. salmiana account for 12% of the total weight, which is
similar to the 15% of free sugars observed in 2-year-old plantlets
of A. tequilana (Arrizon et al., 2010). Previous studies have
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shown that the amount of total carbohydrates in Agave sp.
increases with the age of the plant (Pinos-Rodríguez et al., 2008)
and that these carbohydrates are commonly accumulated as
fructans (Arrizon et al., 2010). However, no significant difference
in the amount of soluble sugars extracted as fructose and
glucose has been reported because these sugars are used by the
plant immediately, either for the formation of fructans or for
synthesis of sucrose as a transport sugar (Michel-Cuello et al.,
2008).

A study by Michel-Cuello et al. (2008) found no significant
difference between total soluble sugars and different ages of
A. salmiana plants (immature and mature). However, in this
study significant differences were observed between WT, in vitro
and ex vitro plants. In fact, the low content of total soluble sugars
obtained in the in vitro plants is consistent with the report of
Barreto et al. (2010), where a decrease of 90% in the content
of fructose was observed once the plants are in an in vitro
environment. This reduction is explained by the addition of
exogenous sucrose and the limited light intensity of the in vitro
culture. These conditions have an effect on the net photosynthesis
rate because glucose, a reducing and soluble sugar, is synthesized
only during photosynthesis in leaves (Michel-Cuello et al., 2008).

WT plants of A. salmiana exhibited a similar range of total
phenolic acids content compared with A. americana (between
8 and 12 mg/g dw of leaf) in two previous studies (Hamissa
et al., 2012; Nasri and Ben Salem, 2012). Nevertheless, an
increase in total phenols was observed when plants were
cultivated in vitro, and total phenolics decreased when the
plants were cultivated ex vitro. Those changes are consistent
with the role that phenolic compounds play in response to
abiotic stress such as drought (Almaráz-Abarca et al., 2013). The
accumulation of phenolic acids has been related to an increase
in activity of phenylpropanoid pathway enzymes, such as CHS
and PAL (Yuan et al., 2012), due to oxidative stress caused
by the absence of an abundance of water (Shan and Liang,
2010).

The total saponin content in IN and EN plants was 7-
and 6-times higher in comparison to that reported by Pinos-
Rodríguez et al. (2008) for 16-year-old plants of A. salmiana
(11.1 mg/g dw); however, WT plants from the north of Mexico
had a 5-times lower saponin content. The content of saponins
is higher in young plants compared with mature or old plants
(Francis et al., 2002). In comparison with other species, all
steps of micropropagation (IN and EN) were 13 and 11-
times higher than reported for A. duranguensis (5.7 mg/g dw;
González-Valdez et al., 2013), and 7- and 6-times higher than
reported for A. lechuguilla (10.4 mg/g dw; Hernández et al.,
2005).

In this study, increases in the total saponins content from
in vitro to WT in the micropropagation steps are consistent
with the changes reported for in vitro cultivated Panax ginseng
compared to a naturally cultivated 4–6-year-old plant (68%
more), and this increase was attributed to the effect of growth
regulators in the medium (Zhong et al., 1996). Lian et al. (2002)
reported a 50% increase of total saponin content in Panax ginseng
when BAP was added from 0 mg/L to 0.5 mg/L.

Antioxidant Activity of Plant Extracts
Previous studies have reported AOX activity in Agave species.
Studies with A. rzedowskiana have shown a high AOX capacity
of 862 µmol TE/g dw (Ahumada-Santos et al., 2013) and low
levels in A. americana (70 µmol TE/g dw; Chirinos et al.,
2013). However, compared to this study, A. salmiana showed
intermediate values of AOX activity (369 µmol TE/g dw).
In a broader comparison with 42 elite AOX plants, fruits,
vegetables (Pertuzatti et al., 2014), andmaize (Urias-Peraldí et al.,
2013), A. salmiana leaves were considered a medium source of
AOXs. Upon comparison with other crops, such as wheat (58–
270 µmol TE/g dw; Malunga and Beta, 2015) or sorghum (70–
204 µmol TE/g dw; Awika et al., 2009), A. salmiana presented
higher values, which might constitute an alternative source of
AOXs.

The increase in AOX activity in vitro plants has been
reported only in Ziziphora teniur L. The mechanism that
explains the increase is still unclear, although it is suggested
that the presence and interaction of cytokinins and auxins
plays an important role in increasing this bioactivity (Dakah
et al., 2014). Alternatively, Zhang et al. (2014) proposed that
the presence of molecules such as phenols or saponins is
involved in the increase in AOX activity. Finally, and after the
micropropagation process, plants ex vitro return to low levels
of AOX activity. This is explained based on previous work
that reported after re-watering, limited-irrigated plants return
to their normal photosynthetic activity levels (Campos et al.,
2014).

Several studies have related the phytochemical content with
AOX activity. For example, a positive correlation between
total phenolic acids content and AOX has been reported
in extracts of desert plants (Hamissa et al., 2012). In
contrast, in this study, no relationship between AOX and
phenolic acids was found. Furthermore, AOX activity has
been associated with non-phenolic acid molecules present in
the extract (Ribeiro et al., 2013; Zhang et al., 2014). For
example, in A. sisalana waste, AOX activity was associated
with the presence of tigogenin, homoisoflavonoids, and flavones
(Zhang et al., 2014). It is important to mention that recent
studies in A. sisalana have shown that the combination of
phenolic compounds and saponins in the raw extract had
a higher AOX activity compared with isolated components
(75% less than raw extract; Ribeiro et al., 2013). In this
study, total saponins had an insignificant correlation with the
bioactivity (r = 0.600; p = 0.154), and the sum of total
saponins and total phenolics acids did not correlate with
the bioactivity (r = 0.327; p = 0.475). Current evidence
demonstrates that A. salmiana plant extracts are composed of
kaempferol and quercetin (Almaráz-Abarca et al., 2013), while
saponins consist of hecogenine, diosgenin, and chlorogenin
glycosides (Yokosuka and Mimaki, 2007; Leal-Díaz et al.,
2015). These findings suggest that the difference in the
specific extracted compounds caused a difference in AOX
activity. Negative correlation between AOX activity and total
soluble sugars (r = –0.927; p = 0.003), is explained by the
changes in the plant growth conditions. In vitro environment
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is a stress factor compared with ex vitro. It has been reported
a reduction in the accumulation of sugars under abiotic
stress as a way to generate mechanisms of defense against
abiotic factors (Suárez-González et al., 2014). In contrast,
ex vitro plant metabolism is directed to the accumulation
of carbohydrates (primary metabolism). Further studies are
needed to establish which specific molecules of phenolic
acid compounds, saponins or the ratio between them, are
correlated with the bioactivity observed in A. salmiana in
the present study. In the near future, this micropropagation
process can be used as a platform for the enhancement
of specific metabolites and bioactivity in A. salmiana
plants.

Finally, changes that occur during the micropropagation
process in terms of total soluble sugars, phenolic compounds,
saponin content and AOX activity, have not been studied
in detail. The process of micropropagation in A. salmiana
generated changes in the AOX activity of the extracts.
Changes in the contents of saponins and phenolic compounds
in the different plant steps did not correlate with the
AOX activity. Further investigation is necessary to determine
which specific metabolites are responsible for AOX in the
extracts.
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