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Regulating activities of 𝛼-amylase and 𝛼-glucosidase through the use of specific inhibitors is a main strategy for controlling type 2
diabetes. Smilax aristolochiifolia root decoctions are traditionally used inMexico as hypoglycemic and for weight loss, but the active
principles and mechanisms underlying such putative metabolic effects are yet unknown. Here, we isolated the major bioactive
compounds from a hydroethanolic extract of S. aristolochiifolia root by fast centrifugal partition chromatography and evaluated
their effects against pancreatic 𝛼-amylase and yeast 𝛼-glucosidase. A chlorogenic acid-rich fraction (CAF) inhibited 𝛼-amylase
activity with an IC

50 value of 59.28 𝜇g/mL in an uncompetitive manner and 𝛼-glucosidase activity with an IC50 value of 9.27 𝜇g/mL
in a noncompetitive mode. Also, an astilbin-rich fraction (ABF) inhibited 𝛼-glucosidase activity with an IC50 value of 12.30 𝜇g/mL,
in a noncompetitive manner. CAF inhibition 𝛼-amylase was as active as acarbose while both CAF and ABF were 50-fold more
potent inhibitors of 𝛼-glucosidase than acarbose. The molecular docking results of chlorogenic acid and astilbin with 𝛼-amylase
and 𝛼-glucosidase enzymes correlated with the inhibition mechanisms suggested by enzymatic assays. Our results prove that S.
aristolochiifolia roots contain chlorogenic acid and astilbin, which inhibit carbohydrates-hydrolyzing enzymes, suggesting a new
mechanism for the hypoglycemic effect reported for this plant.

1. Introduction

Diabetesmellitus is one of themost common chronic diseases
in nearly all countries and continues to increase in number
and significance, as economic development and urbanization
lead to lifestyles characterized by reduced physical activity
and increased obesity [1]. Diabetes mellitus is characterized

by abnormally high plasma glucose concentration, resulting
from insufficient or inefficient insulin secretion, with alter-
ations in carbohydrate, protein, and lipidmetabolism.Hyper-
glycemia has played a central role in the pathogenesis of
complications related to diabetes mellitus, such as retinopa-
thy, cataract, atherosclerosis, neuropathy, nephropathy, and
impaired wound healing [2]. One therapeutic approach
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for decreasing postprandial hyperglycemia is to reduce the
intestinal absorption of glucose from food, through inhibit-
ing the intestinal carbohydrate-hydrolyzing enzymes, 𝛼-
amylase and 𝛼-glucosidase. Synthetic drugs such as acarbose,
voglibose, and miglitol are widely used as inhibitors of
these enzymes in the management of patients with type 2
diabetes [3, 4].However, these inhibitors are reported to cause
several side effects, such as abdominal distension, flatulence,
meteorism, and diarrhea. Previously studies suggested that
the consumption of dietary polyphenols might reduce the
risk of type 2 diabetes and its complications [5–8]. Therefore,
efforts have been directed toward finding natural and safer
𝛼-amylase and 𝛼-glucosidase inhibitors, and the search of
such agents in traditional medicinal plants has become more
important [9].

Smilax aristolochiifolia Miller (Smilacaceae), popularly
known as zarzaparrilla, is widely distributed in Mexico [10]
and commonly employed as root decoctions indicated as
hypoglycemic [11] and for weight loss [12]. Pharmacological
research has reported hematopoietic [13], hypoglycemic, and
hypotensive effects [14] for the root of S. aristolochiifolia.
Although antidiabetic potential has also been reported for
other Smilax species, mainly of S. china [15, 16], the identity of
bioactive compounds responsible for the antidiabetic effects
of S. aristolochiifolia as well as their mechanisms of action
are yet unknown. Therefore, we aim to identify the major
bioactive compounds from S. aristolochiifolia root and to
characterize their effects on 𝛼-amylase and 𝛼-glucosidase
enzymatic activities.

2. Materials and Methods

2.1. Materials. Plants of Smilax aristolochiifolia Miller (in-
cluding the roots) were collected in Apazapan, Veracruz,
Mexico (19∘1925.6N and 96∘4317.3W) in October 2015.
Plant material was authenticated by Dr. M. Chazaro (Biology
Department, UniversidadVeracruzana), and a voucher speci-
men (10855) was deposited in the Institute of Ecology herbar-
ium (IE-XAL), Xalapa, Veracruz, Mexico. 𝛼-Glucosidase
(EC 3.2.1.20, from Saccharomyces cerevisiae, 28U/mg), acar-
bose, 𝜌-nitrophenyl-𝛼-D-glucopyranoside (pNPG), porcine
pancreatic 𝛼-amylase (EC 3.2.1.1, type VI-B, from porcine
pancreas, ≥10U/mg), and 3,5-dinitrosalicylic acid reagent
(DNS) were purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA). The soluble starch was purchased from Jalmek
Cient́ıfica (Monterrey, NL, Mexico).

2.2. Preparation of S. aristolochiifolia Root Extract. Theroot of
the plant was dried in the dark at room temperature and the
dried material was then milled with a ball mill. Preliminary
assays showed that extraction of S. aristolochiifolia roots by
aqueous infusion or hydroethanolic maceration gives rise to
the same profile of elution (Figure S1), although maceration
produced a 2-fold higher yield than infusion (15.28% by
infusion and 30.11% by maceration). The extraction was
performed by maceration at room temperature (25∘C) and
stirring overnight using a solid: liquid ratio of 1 : 20 w/v in
ethanol: water (1 : 1, v/v) as solvent. The S. aristolochiifolia
root extract (SAR)was obtained by filtration acrossWhatman

paper no. 4. Then, ethanol was eliminated by concentration
under vacuum (IKARV 10 digital, Staufen, Germany) at 40∘C
and water by freeze-drying. Dry SAR was stored at −80∘C
until use.

2.3. Fast Centrifugal Partition Chromatography. Fractions
from SAR were obtained in a preparative fast centrifugal
partition chromatography (FCPC) instrument (Kromaton,
Angers, France), with rotor capacity of 1 L, operated in dual-
mode: 0–57min in descending mode, and 58–120min in
ascending mode at 1000 rpm and a flow rate of 10mL/min
using ethyl acetate: water (1 : 1 v/v) as the two-phase solvent
system, according to preliminary assays (Table S1). SAR
(10 g) was dissolved in 160mL of solvent system, filtered, and
pumped into the rotor. One hundred and twenty fractions
were collected and grouped in pools of 10 fractions according
to similarity of their partition coefficient (𝑘𝑑) values to
facilitate their analysis. A total 12 pools were concentrated to
dryness at 45∘C under reduced pressure (EZ-2 Plus, Genevac
Ltd., UK) and stored at −20∘C until testing.

2.4. High Performance Liquid Chromatography Analysis. SAR
and its FCPC-obtained fractions were analyzed by HPLC-
DAD (Agilent Technologies, 1200 Series, Santa Clara, CA)
according to the method described by Becerra-Moreno et al.
[17]with somemodifications.The compoundswere separated
in a Luna 5UC18, 4.6mm ID × 250mm (5 𝜇m) column (Phe-
nomex, Torrance, CA). The mobile phase was constituted by
solvent A, HPLC grade water (BDH, Poole, UK) acidified
with 0.1% formic acid (CTR Scientific, Monterrey, NL, Mex-
ico), and solvent B, HPLC grademethanol (BDH, Poole, UK),
using a gradient at a flow rate of 0.8mL/min.The proportion
of the mobile phase was maintained as follows: 0–3min (B,
0% to 18%); 3–8min (B, 18% to 30%); 8–35min (B, 30% to
42%); 35–40min (B, 42% to 48%); 40–45min (B, 48% to
60%); 45–50min (B, 60% to 100%); 50–60min (B, 100% to
0%). Chromatograms were obtained at 280 nm, 10 𝜇L of sam-
ple was injected, and UV absorption spectra were collected.
The results of quantification were expressed as chlorogenic
acid or kaempferol-3-O-glucoside equivalents, based on the
calibration curve of the corresponding standards.

Identification of major compounds was carried out by
liquid chromatography coupled with time-of-flight mass
spectrometry (LC/MS-TOF) (1100 Series, Agilent Technolo-
gies, Santa Clara, CA), using the same chromatographic
conditions described above. Ionization was carried out using
an electrospray ionization source in positive mode (ESI+)
with the following conditions: range for mass scan covered
from𝑚/𝑧 140 to 1000, nitrogen gas temperature set at 350∘C,
gas flow rate at 11 L/min, nebulizer pressure at 50 psi, 3500V
capillary voltage, and 50V in fragmentor. Extracted ion
chromatograms were obtained by considering the exact mass
of the compound using Analyst QS 1.1 software (Applied
Biosystems, Carlsbad, CA).

2.5. Enzyme Inhibition Assays and Action Mechanism Study

2.5.1. Assay of 𝛼-Amylase Activity. The 𝛼-amylase inhibitory
activity of SAR, CAF, and ABF was determined bymeasuring
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the reducing power of released oligosaccharide from soluble
starch according to the method of Miller [18]. A series of
tests at varying concentrations of both substrate and inhibitor
were conducted to determine inhibition types. SAR, CAF,
and ABF were prepared at concentrations of 1 to 200𝜇g/mL
in 20mM phosphate buffer with 6.2mM sodium chloride
at pH 6.9. Porcine pancreatic 𝛼-amylase at 5U/mL and 1%
soluble starch solutions were prepared in the same buffer. All
solutions were prepared immediately prior to each test.

Aliquots of an 𝛼-amylase solution of 500 𝜇L and a sample
solution of 500𝜇L weremixed in a 15mL Eppendorf tube and
incubated at 20∘C for 10min. The reaction was initiated by
adding 1mL of starch solution into themixture and incubated
during 10min at 20∘C.Afterwards, 1mLof 3,5-dinitrosalicylic
acid (DNS) reagent solution was added followed by heating
in boiling water for 15min to develop color. The reaction was
stopped by cooling down in ice water. The reaction mixture
was diluted with 9mL of distilled water and the absorbance
was read at 540 nm using a spectrophotometer (UV-VIS
6405, JENWAY, UK). Acarbose was used as a positive control
and phosphate buffer as a negative control. The inhibition
percentage was calculated following the equation:

% Inhibition =
Absnegative control − Abssample

Absnegative control
× 100 (1)

2.5.2. Assay of 𝛼-Glucosidase Activity. The 𝛼-glucosidase
inhibitory activity of SAR, CAF, and ABF was assayed by the
pNPG (𝜌-nitrophenyl-𝛼-D-glucopyranoside) method [19].
Briefly, reactionmixtures consisting of 25𝜇L of𝛼-glucosidase
from S. cerevisiae (0.2U/mL) (Sigma-Aldrich, G5003) and
25 𝜇L of different concentrations (1 to 200𝜇g/mL) of sample
solutions were preincubated in a 96-well plate at 20∘C for
10min. Afterwards, the reaction was started by adding 50 𝜇L
of 2mM pNPG to each well. After 20min, the reaction was
stopped by adding 50 𝜇L of 0.2M Na2CO3. All solutions
were prepared immediately prior to each test and 20mM
phosphate buffer with 6.2mM sodium chloride at pH 6.9 was
used as vehicle. The 𝜌-nitrophenol product released from the
pNPG substrate was used to quantify the enzymatic activity;
the absorbance was measured at 405 nm in a microplate
reader (Bio-Rad model 550, Berkeley, CA). The percentage
of inhibition was calculated according to (1).

2.5.3. Determination of Enzymatic Inhibitory Model by Kinet-
ics Analysis. The type of enzyme inhibition was graphically
determined using the Lineweaver–Burk plot. The inhibition
activity (IC50) was used to evaluate the effectiveness of an
inhibitor. IC50 value is defined as the concentration of a
test substance required achieving half maximal inhibition
of a given reaction. IC50 values were calculated using the
nonlinear regression and logistic function.

2.6. Homology Modeling of 𝛼-Glucosidase. Unlike 𝛼-amylase,
the crystallographic structure for 𝛼-glucosidase enzyme is
not available; therefore the 3D model of 𝛼-glucosidase
from Saccharomyces cerevisiae was generated based on the
sequence similarity by using homologymodeling.The amino
acid sequence of the target protein was retrieved from NCBI

(https://www.ncbi.nlm.nih.gov/) with ID: P53341.1. BLASTp
server was used against Protein Data Bank database to find
the appropriate structure template for the homology model.
The alignment between the sequences was performed using
the MODELLER v.9.18 program. One hundred models were
built and the single model was selected by DOPE (Discrete
Optimized Protein Energy) score. The final model was
validated using two tools ProSa (Protein Structure Analysis)
and QMEAN (Qualitative Model Energy Analysis).

2.7. Molecular Docking Studies. Molecular docking studies
were used to explore the binding mode between ligand
and receptor [20]. According to results of enzymatic assays
and inhibition type, we investigated the binding modes
of chlorogenic acid and astilbin against 𝛼-amylase and 𝛼-
glucosidase enzymes. First, the three-dimensional structure
of porcine pancreatic 𝛼-amylase with malto-oligosaccharides
(PDB ID: 1UA3) was obtained from the Protein Data Bank
(PDB) database. For calculation, the malto-oligosaccharides
were conserved and all water molecules were removed from
the crystallographic structure. The molecular docking was
performed using AutoDock 4.2 and AutoDock Tools (ADT,
v.1.5.6). The grid dimensions were adjusted to 60 × 60 ×
60 points separated by 0.375 Å. PyMOL (PyMOL Molecular
Graphics System, San Carlos, CA, USA) and Discovery
Studio Visualizer v.17.2.0.16349 (BIOVIA, San Diego, CA,
USA) were used for visualization.

On the other hand, the 3D structures of chlorogenic
acid and astilbin were obtained from PubChem in the NCBI
database. The dimensions of the grid, which represents the
coordinates of the parameters in which the ligand can be
moved, were 30 × 40 × 40 points separated by 1.0 Å. To estab-
lish the grid, it was chosen based on the binding sites reported
in noncompetitive inhibition for 𝛼-glucosidase, covering the
residues ASP214, GLU276 and ASP349, ILE149, PRO150 and
ASP232, and SER311, PRO312, VAL319, THR310, GLY309,
VAL308, ASP307, PHE321 and PRO320 [21–23]. In the default
parameters, the Lamarckian genetic algorithm (LGA) was
chosen for docking calculations, and 100 experiments per lig-
and were performed. Compared with the rigidity of the pro-
tein, the ligand remained flexible. In the results of molecular
docking, the pose with lowest docking energy andmaximum
number of conformations was selected to represent its most
favorable binding mode predicted by this program.

2.8. Statistical Analysis. The enzymatic assays were per-
formed in triplicate. The results were analyzed using Stat-
graphics Centurion XVII v.17.2.00 with Tukey’s HSD test. For
each data set,𝑃 < 0.05was considered statistically significant.
The experimental results were expressed as the mean ±
standard deviation of at least two separate experiments.

3. Results and Discussion

3.1. Analysis of S. aristolochiifolia Root Extract and Isolation
of Chlorogenic Acid and Astilbin by Fast Centrifugal Par-
tition Chromatography (FCPC). Chromatographic analyses
of SAR at 280 nm (Figure 1) showed two main phenolic
constituents, peak 2 eluting at 18.59min and peak 4 eluting
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Figure 1: HPLC-UV/Vis chromatogram shown at 280 nm of S. aristolochiifolia root hydroethanolic extract. Conditions: reverse-phase C18
column (4.6 × 150mm, 5 𝜇m, Phenomex); mobile phase, water acidified with 0.1% formic acid and methanol using a concentration gradient
(see methodology); flow rate: 0.8mL/min.

at 40.37min. Two minor SAR constituents, peaks 1 and 3,
were not considered in the present work. Peaks 2 and 4 were
tentatively identified according to their UV absorption,𝑚/𝑧,
fragmentation patterns, and previously reported data. The
UV-vis spectrum of peak 2 showed characteristic bands of a
caffeine residue with 𝜆max of 240 and 327 nm (Figure 2(b))
and a molecular ion of 355.09𝑚/𝑧 [M + H+] (Figure 2(a))
corresponding to the chlorogenic acid (Figure 2(c)). The
identity of chlorogenic acid was corroborated by standard
retention time (data not showed). The UV-vis spectrum of
peak 4 had an absorption maximum of 290 nm (Figure 2(e))
and a molecular ion of 451.12𝑚/𝑧 [M + H+] (Figure 2(d)),
which is characteristic of astilbin, a flavonoid compound
(Figure 2(f)) [24]. Our results constitute the first report of the
presence of chlorogenic acid and astilbin in S. aristolochiifolia,
though both compounds have been previously reported for
other species in the genus Smilax [25–30].

Chlorogenic acid is a phenolic compoundwith important
pharmacological properties, such as neuroprotective [31],
antihyperlipidemic [32], hypoglycemic [33, 34], insulin sec-
retagogue, and sensitizer [35–37]. Chlorogenic acid is present
in many plant species and appreciable chlorogenic acid
contents have been shown in Cecropia obtusifolia, Vaccinium
corymbosum, Ilex paraguariensis,Camellia sinensis, and green
coffee beans [34, 38–40]. In this study, 83.19mg chlorogenic
acid equivalents per gram of SAR (2504mg/100 g dry matter)
were obtained (Table 1). This concentration of chlorogenic
acid is higher than those reported for other sources such as
I. paraguariensis (1599.6mg/100 g dry matter) [38], Cecropia
obtusifolia (1330mg/100 g dry matter) [34], and coffee pulp
(309.7mg/100 g dry matter) [41] and makes S. aristolochi-
ifolia an advantageous source of chlorogenic acid. On the
other hand, 3.72mg of astilbin expressed as kaempferol-
3-O-glucoside equivalents was obtained per gram of SAR
(112mg/100 g dry matter) below other species as Smilax
glabra (1%–4%, w/w) [42] or Engelhardia roxburghiana [43]
(Table 1).

When SAR was subjected to one-step FCPC separation,
chlorogenic acid was recovered mainly in fractions around of
0.22 𝑘𝑑 (Figure 3(a)), while astilbin appeared mainly in frac-
tions with a 𝑘𝑑 value of 2.68 (Figure 3(b)). It was possible
to recover both compounds in one-step FCPC separation
because we used the dual-mode in which switching the

phases extrudes the contents of the column, retrieving com-
pounds of high 𝑘𝑑 values as peak 4. The pool of chlorogenic
acid-enriched fractions (CAF) achieved concentrations of
this compound up to 1.02-fold more than SAR and the pool
of astilbin-enriched fractions (ABF) reached 13.11-fold more
astilbin than extract (Table 1). CAF andABFwere selected for
the next assays.

3.2. Effects of S. aristolochiifolia Root Extract (SAR), Chloro-
genic Acid Fraction (CAF), and Astilbin Fraction (ABF) on 𝛼-
Amylase and 𝛼-Glucosidase Activities. SAR, CAF, and ABF
blocked the pancreatic 𝛼-amylase activity in a concentration-
responsivemanner. SAR 50𝜇g/mL inhibited𝛼-amylase activ-
ity by 22% while SAR 100 𝜇g/mL inhibited 𝛼-amylase by
56% and SAR 200 𝜇g/mL reached an enzymatic inhibition of
82%, a similar inhibition level as the corresponding acarbose
concentration. On the other hand, CAF 50 𝜇g/mL inhibited
𝛼-amylase activity by 40%, while CAF 100 𝜇g/mL inhibited
the enzyme by 75%, similar to acarbose. On the contrary, ABF
exerted only marginal inhibitory effects against 𝛼-amylase at
all the assayed concentrations (Figure 4(a)). The IC50 values
in our 𝛼-amylase assays were 90.01±3.97 𝜇g/mL for SAR and
59.28±1.30 𝜇g/mL forCAF, this last one statistically similar to
the acarbose (IC50: 58.59 ± 1.06 𝜇g/mL). Our results confirm
recent reports showing the inhibitory effects of chlorogenic
acid on 𝛼-amylase activity [44–46].

We also evaluated the effects of SAR and its fractions
on yeast 𝛼-glucosidase activity. SAR 10𝜇g/mL inhibited 𝛼-
glucosidase activity by 34% and SAR 20 𝜇g/mL inhibited
this enzyme by 81%. In the same manner, CAF 10 𝜇g/mL
inhibited 𝛼-glucosidase activity by 47% and CAF 20𝜇g/mL
inhibited 𝛼-glucosidase by 70%, while ABF 10 𝜇g/mL blocked
𝛼-glucosidase in 35% and ABF 20 𝜇g/mL inhibited the
enzyme by 78%. All three preparations at 50𝜇g/mL blocked
𝛼-glucosidase activity by 98% (Figure 4(b)). The IC50 values
in our 𝛼-glucosidase assays were 12.39±0.33 𝜇g/mL for SAR,
9.27 ± 2.05 𝜇g/mL for CAF, and 12.30 ± 0.91 𝜇g/mL for ABF.
The inhibition of 𝛼-glucosidase by S. china stem extract and
chlorogenic acid has been previously reported but this is the
first report on the inhibition of 𝛼-glucosidase by astilbin.
Moreover, the 𝛼-glucosidase IC50 value of SAR was sensibly
lower than IC50 value reported for S. china stem extract
(IC50: 51.7 𝜇g/mL) [15], suggesting that S. aristolochiifolia
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Figure 2: Tentative identification of chlorogenic acid (c) and astilbin (f) by spectral analyses of mass spectrum by ESI/MS (a, d) and UV-vis
(b, e).

Table 1: Chlorogenic acid and astilbin contents in SAR, CAF, and ABF.

Sample 𝑘𝑑 Chlorogenic acid content (mg CAE/g) Astilbin content (mg KGE/g)
SAR - 83.19 3.72
CAF 0.22 84.77 ND
ABF 2.68 ND 48.76
CAE, chlorogenic acid equivalents; KGE, kaempferol-3-O-glucoside equivalents; ND, not detected. S. aristolochiifolia root extract, SAR; chlorogenic acid-rich
fraction, CAF; astilbin-rich fraction, ABF.
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Figure 3: HPLC UV/Vis chromatograms of chlorogenic acid (CAF; a) and astilbin (ABF; b) rich fractions obtained by preparative FCPC
from S. aristolochiifolia root extract. Conditions: two-phase solvent system, ethyl acetate: water (1 : 1 v/v); dual-mode: 0–57min in descending
mode and 58–120min in ascending mode; flow rate, 10mL/min; rotation speed, 1000 rpm; monitored at 280 nm.
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Figure 4: Inhibition of 𝛼-amylase (a) and 𝛼-glucosidase (b) enzymes by S. aristolochiifolia root (SAR) and its fractions rich in chlorogenic
acid (CAF) and astilbin (ABF).

could be an optimal source for inhibitors of 𝛼-glucosidase
among Smilax species. CAF had the highest inhibitory
activity compared with other preparations; these results are
in accordance with a strong inhibition of chlorogenic acid
against 𝛼-glucosidase [44, 47]. SAR and its FCPC-obtained
fractions had up to 50-fold more effective 𝛼-glucosidase
inhibitory activity compared with acarbose (IC50: 673.29 ±
53.04 𝜇g/mL). Therefore, the inhibitory activity of S. aris-
tolochiifolia root extract and its FCPC-obtained fractions
against pancreatic 𝛼-amylase and yeast 𝛼-glucosidase may
be one of the mechanisms of the hypoglycemic effect of S.
aristolochiifolia [14]. However, further studies are required to
extend this effect to mammalian systems.

3.3. Enzymatic InhibitoryModel. Thedouble reciprocal Line-
weaver–Burk plots revealed that the CAF inhibition of

𝛼-amylase was uncompetitive since 𝑘𝑚 and Vmax values were
affected at the same degree by different CAF concentra-
tions (Figure 5(a)). On the other hand, the inhibition of
𝛼-glucosidase by SAR, CAF, and ABF preparations was
noncompetitive since 𝑘𝑚 values for different concentrations
of these preparations remained constant while their Vmax
values decreased with increased inhibitor concentration (Fig-
ures 5(b), 5(c), and 5(d)). Noncompetitive inhibition of 𝛼-
glucosidase has been reported for chlorogenic acid [48],
apigenin [23], and xanthone derivatives [22].

3.4. Three-Dimensional Structure of 𝛼-Glucosidase Obtained
from Homology Modeling. Alignment analysis with Blastp
showed that isomaltase from Saccharomyces cerevisiae has
a high sequence identity (72%) with the target; besides the
active site is highly conserved (Figure 6).Therefore, the X-ray
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Figure 5: Lineweaver-Burk plots of 𝛼-amylase (a) and 𝛼-glucosidase (b, c, and d) activities by S. aristolochiifolia root extract (SAR),
chlorogenic acid-rich fraction (CAF), and astilbin-rich fraction (ABF). The kinetics was assayed in the absence (control) and the presence of
three different concentrations of each preparation.

crystal structure of isomaltase from S. cerevisiae (PDB ID:
3A47) was selected as template for homology modeling.
According to the validation analysis, the theoreticalmodel for
𝛼-glucosidase was within the range of scores typically found
for native proteins of similar size (Figure 7(a)). Furthermore,
a QMEAN𝑍 score value of −1.22 for the predicted 𝛼-glucosi-
dase indicated it was of comparable quality to experimental
structures (Figure 7(c)). On the other hand the energies
in function of the position of the sequence of amino acids
showed negative values, considering that positive values cor-
respond to problematic or erroneous parts of the input struc-
ture (Figure 7(b)). Consequently, the predicted model for
𝛼-glucosidase is a reliable model to performance molecular
docking studies.

3.5. Molecular Docking Analysis on 𝛼-Amylase and 𝛼-Glu-
cosidase. To get further insight into the binding mode
between astilbin and chlorogenic acid with𝛼-glucosidase and
chlorogenic acid with 𝛼-amylase, the molecular docking was
carried out.The docking analysis for chlorogenic acid with 𝛼-
amylase was done on the enzyme-substrate complex and the
interactions were predicted close of active site, due to the fact
that chlorogenic acid showed an uncompetitive inhibition.
Unlike acarbose, which is a strong competitive inhibitor of 𝛼-
amylase, chlorogenic acid requires the formation of enzyme-
substrate complex for binding. In the uncompetitive inhibi-
tion, the binding of substrate at the catalytic site may modify
the 𝛼-amylase structure, making the inhibitor binding site
available. The better pose for chlorogenic acid obtained from
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Figure 6: Sequence alignment between 𝛼-glucosidase (MAL12) (NCBI ID: P53341.1) and isomaltase (PDB ID: 3A47). ∗ indicates conserved
residues. The active site residues are indicated in bold blue types.

docking analysis showed lowest energy (−5.97Kcal/mol),
with highest binding affinity.Themain interactions of chloro-
genic acid with 𝛼-amylase involved conventional hydro-
gen bonds with residues LYS200, GLU240, GLY306, and
GLY308, in addition to a malto-oligosaccharide molecule
(Figure 8(c)). Our results suggested an important correlation
between the uncompetitive inhibition on 𝛼-amylase (in vitro
assay) and predicted molecular ligand-enzyme interactions.
The hydroxyl groups of chlorogenic acid could be anchored
near the active site of 𝛼-amylase (Figure 8(a)).

On the other hand, for the analysis of molecular docking
for 𝛼-glucosidase, both compounds had different binding
characteristics, as shown in their suggested binding modes
(Figure 9). While the binding site for chlorogenic acid on
𝛼-glucosidase was situated in a place away from the active
site, astilbin was close to the active site of the enzyme; both
poses corresponded with noncompetitive inhibition mode
(Figure 9(c)).The complex of 𝛼-glucosidase-chlorogenic acid
showed lowest binding energy of−3.75 kcal/mol. Chlorogenic

acid formed hydrogen bonds with the residues SER161,
PHE165, and LYS418, and a 𝜋-𝜋 T-shaped interaction
between A ring and PHE172 was found (Figure 9(d)). It is
likely that this binding interaction of chlorogenic acid to the
allosteric site of 𝛼-glucosidase would probably perturb the
protein structure and subsequently the enzyme activity. A
similar result was obtainedwith xanthone derivatives, as non-
competitive inhibitors of 𝛼-glucosidase with interactions of
hydrogen bonding and 𝜋-𝜋 stacking [21].

The 𝛼-glucosidase-astilbin inhibitor complex showed
lowest binding energy of−4.56 kcal/mol comparedwith other
poses. Astilbin formed hydrogen-bonding interactions with
residues GLU304, PRO309, ASN241, and ASN246, and a 𝜋-
cation interaction between B ring with HIS279 was found
(Figure 9(e)). The hydrogen bonds played a role in the
binding of astilbin to 𝛼-glucosidase; two hydrogen bonds
were formed between the oxygen of the hydroxyl groups at
the C-3 and C-4 position on the B ring of astilbin and
GLU304. Although the glycosylation of flavonoids decreased
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Figure 7: Model evaluation in function of QMEAN Z-score (a, c) and comparison of the ProSa energy profiles for the homology modeled
structure of 𝛼-glucosidase (light green) and the X-ray structure of isomaltase (green) (b).

(a) (b) (c)

Figure 8: Molecular docking for chlorogenic acid with 𝛼-amylase (a). Binding uncompetitive mode (b) and two-dimensional interaction
diagram (c). Green and red dashed lines show hydrogen bonds and unfavorable donor-donor interactions, respectively. Residues involved in
hydrogen bonds (green circles) are shown.
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(d) (e)

Figure 9: Molecular docking for chlorogenic acid (yellow) and astilbin (green) with 𝛼-glucosidase (c). Docking of chlorogenic acid (a) and
astilbin (b) and corresponding two-dimensional interaction diagrams (d, e). Green dashed lines show hydrogen bonds. Residues involved in
hydrogen bonds (green circles), 𝜋-𝜋 T-shaped (pink circles), or 𝜋-cation (orange circles) interactions are shown.

the inhibition on 𝛼-glucosidase, compared to quercetin,
astilbin formed hydrogen bonds between hydroxyl groups of
rhamnosyl moiety and HIS239, PRO309, and PHE310 [49].
Flavonoids like apigenin presented noncompetitive inhibi-
tion against 𝛼-glucosidase, its binding site is very similar to
astilbin, and the interaction with residues close to active site
might induce channel closure to prevent access of the sub-
strate [23]. Previous studies have shown that the number of
hydrogen bonds had no effect on binding affinity; the hydrox-
ylation of flavonoids improved the inhibitory effects against
𝛼-glucosidase, which might cause conformational changes in
the enzyme structure. In both molecular docking analyses,
hydrogen bonds had an important role in biological recog-
nition process and implication of 𝜋-𝜋 stacking interaction
might be the origin of the enhanced inhibitory activities [5].

4. Conclusions

This is the first report on the presence of chlorogenic acid and
astilbin in the roots of Smilax aristolochiifolia and on the
inhibition of 𝛼-glucosidase by astilbin. Our results indi-
cate that these compounds exert noncompetitive inhibition
through two different binding sites on 𝛼-glucosidase. More-
over, chlorogenic acid shows an efficient in vitro uncom-
petitive inhibition against 𝛼-amylase. Our results suggested

that inhibition of 𝛼-glucosidase and 𝛼-amylase by Smilax
aristolochiifolia and its compounds chlorogenic acid and
astilbin could be one of the mechanisms of the hypoglycemic
properties attributed to this plant. However, their antidiabetic
potential need be corroborated on in vivo assays of postpran-
dial hyperglycemia.
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Supplementary Materials

Supplementary 1. Figure S1: profile of S. aristolochiifolia root
extract obtained by aqueous infusion (blue) and hydroethan-
olic maceration (red). HPLC UV/Vis at 280 nm. Extraction
conditions for aqueous infusion were 60∘C under stirring for
1 hour and hydroethanolic maceration consisted in leaving
the sample in ethanol : water (1 : 1 v/v) at room tempera-
ture (25∘C) and stirring overnight; in both processes, the
solid : liquid proportion of 1 : 20w/v was used.
Supplementary 2. Table S1: 𝑘𝑑 values of the major peaks of
SAR at different concentrations in two solvents systems.
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