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Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the
central nervous system that exhibit synaptic plasticity and are involved in higher brain
functions such as learning and memory. AD is characterized by progressive cognitive
dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy
metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of
adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from
bone marrow and adipose tissue, have the potential to decrease cognitive deficits,
possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis,
synaptogenesis and angiogenesis. These processes are mediated primarily by the
secretion of many growth factors, anti-inflammatory proteins, membrane receptors,
microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several
functional molecules like proteins, lipids and regulatory RNA which can modify cell
metabolism. In the proteomic characterization of the content of MSC-derived exosomes,
more than 730 proteins have been identified, some of which are specific cell type
markers and others are involved in the regulation of binding and fusion of exosomes
with adjacent cells. Furthermore, some factors were found that promote the recruitment,
proliferation and differentiation of other cells like neural stem cells. Moreover, within
exosomal cargo, a wide range of miRNAs were found, which can control functions
related to neural remodeling as well as angiogenic and neurogenic processes. Taking
this into consideration, the use of exosomes could be part of a strategy to promote
neuroplasticity, improve cognitive impairment and neural replacement in AD. In this
review, we describe how exosomes are involved in AD pathology and discuss the
therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo.
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INTRODUCTION

Alzheimer’s disease (AD) is characterized by the progressive deposition of β-amyloid (Aβ)
around neurons and the intracellular accumulation of neurofibrillary tangles (NFT) of
hyperphosphorylated tau,mainly in areas implicated inmemory and learning, such as the prefrontal
cortex and hippocampus. In advanced stages of the disease, aggregates of Aβ are present in
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motor areas, cerebrospinal fluid, as well as in eyes and
neuromuscular joints (Reiss et al., 2018).

Presently there is no effective treatment for AD hence,
stem cell therapy has been proposed to be a promising
therapeutic option for this neurological disorder. Cell therapies
for brain restoration generally target multiple cells of the
brain parenchyma such as endothelial cells, neural stem cells
(also named neural progenitors) and oligodendrocyte precursor
cells. The interaction between the administered cells and
resident cells promote neuroplastic events such angiogenesis
stimulation, neurogenesis and axonal remodeling, result in
a neurological recovery (Xin et al., 2017a; Xiong et al.,
2017).

Several studies have demonstrated the effectiveness of
Mesenchymal Stem Cells (MSCs) treatment in several
neurodegenerative diseases (Wei et al., 2013). These cells
have typical stem cell characteristics like the potential to
differentiate into multiple cell lineages under different
physiological conditions, including the ability to selectively
migrate towards damage sites (homing) and interact with brain
parenchyma cells. This interaction stimulate the production
of neurotrophins such as vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF) and
neurotrophin-3 (Li et al., 2002; Kurozumi et al., 2004; Kim et al.,
2010; Matthay et al., 2017) which increase neuritic development,
promote neurorestoration and neurological recovery (Xiong
et al., 2017; Harting et al., 2018).

Among the main functions of MSCs are their ability to
limit inflammation environments through the release of soluble
factors such as HGF, prostaglandin E2, transforming growth
factor β1, indoleamine 2,3 dioxygenase, interleukin 10 and
nitric oxide. This immunomodulatory environment allows the
expression of growth factors, high immunomodulatory protein
secretion and the enhancement of endogenous cellular repair
processes (Nguyen et al., 2013; Phinney and Pittenger, 2017).

A central hypothesis has been proposed, in which MSCs are
implied to exert a dynamic homeostatic response that supports
tissue preservation as well as function recovery (Harting et al.,
2018). Themainmechanism by whichMSCsmediate this activity
is not the cellular implant and its subsequent differentiation,
but the paracrine activity of the secretome (Nakano et al., 2016;
Yang Y. et al., 2017). This phenomenon was demonstrated in
studies where conditioned medium of MSCs was administered
and therapeutic effects similar to those already reported forMSCs
were produced in different animal models of diseases (Timmers
et al., 2007; Mitsialis and Kourembanas, 2016). A subsequent
fractionation of this conditioned medium was performed and
an active component of approximately 50–150 nm was found.
Biophysical studies categorized these compounds as exosomes
(Lai et al., 2010; Phinney and Pittenger, 2017). Consequently,
it was established that one of the critical parameters that
regulate the paracrine activity of MSC is the generation of
exosomes (Drommelschmidt et al., 2017; Phinney and Pittenger,
2017). Therefore, exosomes may be a therapeutic option in
the treatment of AD because they exert therapeutic effects
like MSCs.

Biogenesis of Exosomes
Exosomes are small (30–150 nm diameter) membrane-enclosed
vesicles of endosomal origin, released by a variety of cell types,
capable of transferring biologically active macromolecules, such
as proteins, lipids and RNA, to other cells (Bang and Thum,
2012). Exosomes are originated as intraluminal vesicles within
the multivesicular bodies (MVB) by inward budding of the late
endosomal membrane (Colombo et al., 2014). The Endosomal
Sorting Complex Required for Transport (ESCRT) machinery
is important in this process. ESCRT consist of approximately
20 proteins that assemble four different complexes; ESCRT-
0, -I, -II, -III and the associated AAA ATPase vacuolar
protein sorting 34 (Vps4) complex (Henne et al., 2013).
ESCRT-0 recognizes and sequesters ubiquitylated proteins in
the endosomal membrane, ESCRT-I and -II are responsible
for membrane budding as well as recruiting of ESCRT-III that
finally drive vesicle scission (Hurley and Hanson, 2010). The
dissociation and recycling of the ESCRTs require the AAA
ATPase Vps4 complex. Transport of MVB towards plasma
membrane depends on interaction with the cytoskeleton, this
interaction is mediated mainly by Rab GTPases and SNARE
proteins, although precise mechanism of action in this process
is not known (Ostrowski et al., 2009; Beer and Wehman,
2017). MVB subsequently fuse with the plasma membrane and
release those intraluminal vesicles such as exosomes (Camacho
et al., 2013; Abels and Breakefield, 2016). Some studies also
suggest that MVB biogenesis can occur without ESCRTs. It has
been shown that despite simultaneously silencing key subunits
of all four ESCRTs, intraluminal vesicles are still formed in
MVB, indicating the presence of a mechanism independent of
ESCRT (Stuffers et al., 2009). Tetraspanins (Escola et al., 1998)
and lipids (mainly ceramide; Trajkovic et al., 2008) could be
essential players in exosome biogenesis due to the formation of
microdomains that coalescence into larger domains that promote
membrane budding.

As mentioned above, exosomes contain different proteins,
lipids and nucleic acids (DNA, mRNA, microRNAs (miRNA),
lncRNA), however, determining the exact composition and
content of the exosomal content (cargo) produced by different
cell types is hard to establish due to differences in the
conditions which the cells are found. It should be mentioned
that cellular homeostasis is an important factor that controls
exosome cargo and secretion, therefore the exosomes will present
characteristics that reflect its cellular origin (de Jong et al.,
2012; Harting et al., 2018). Mechanisms for sorting cargo
molecules into exosomes are still poorly understood. However,
the ubiquitination is considered the main sorting signal for
protein cargo entry into exosomes. Ubiquitinated proteins are
recognized by receptors such as ESCRT subunits responsible
for binding and directing cargo towards intraluminal vesicles
(Piper and Katzmann, 2007). Usually these vesicles contain
proteins that are involved in its biogenesis mechanisms, for
example, ESCRT system components such as tetraspanins CD63,
CD81 and CD9, as well as ALIX, TSG10, likewise proteins
associated with their secretion as RAB27A, RAB11 and ARF6
(Wu et al., 2015; Abels and Breakefield, 2016). There are
different pathways for miRNA sorting, which include: (I) neutral
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sphingomyelinase 2 pathway demonstrated by Kosaka et al.
(2010), in where they found that overexpression of neutral
sphingomyelinase 2 increased the amount of miRNA into
exosomes, while its chemical inhibition reduced the number of
miRNAs; (II) the miRNA motif and sumoylated heterogeneous
nuclear ribonucleoproteins (hnRNPs) pathway reported by
Villarroya-Beltri et al. (2013), identified a short sequence motifs
in miRNAs (GGAG) in the portion 3′ that is recognized by
exosomal sumoylated hnRNPs, this hnRNP-miRNA binding
control the miRNA loading into exosomes; (III) the miRNA
induced silencing complex (miRSC) pathway. Components of
miRSC includemiRNA,miRNA repressible mRNA, and proteins
GW182 and AGO2; Guduric-Fuchs et al. (2012) discovered
that knockout of AGO2 decreases the abundance of miRNA
exported by exosomes. Besides AGO2, others components
of miRSC like GW182 were found to be colocalized with
MVB (Guduric-Fuchs et al., 2012). Despite this evidence of
exosomal cargo sorting, the underlying mechanisms remain
unclear.

Concerning lipid composition of the exosomal membrane,
there are some lipids such as sphingomyelin, cholesterol,
ganglioside GM3, phosphatidylserine and ceramide that form
lipid raft domains that are more abundant in the exosomal
membrane than in the cell of origin (Angeloni et al., 2016). In
contrast, phosphatidylcholine and diacylglycerol are scarce in the
membrane of exosomes compared to the cell membrane (Abels
and Breakefield, 2016).

Exosomes as Intercellular Communication
Mediators
There is evidence suggesting that exosomes are internalized into
recipient cells (Mulcahy et al., 2014). However, elucidation of
the mechanisms of exosome targeting and uptake by recipient
cells remains an important challenge. Exosomes could bear
combinations of ligands that would engage different cell-surface
receptors simultaneously, therefore different mechanisms have
been proposed by which a cell can interact and uptake
these nanovesicles. This communication could be through
membrane receptors and the subsequent exosome membrane
fusion with the cell membrane to exchange proteins and cytosol
components. An other mechanism is through endocytosis,
among which are clathrin-mediated endocytosis, caveolin-
mediated endocytosis (Svensson et al., 2013), phagocytosis
mediated mainly by phosphatidylserine, and micropinocytosis.
The uptake mechanism used may depend on proteins and
glycoproteins found on the surface of both the nanovesicle and
the target cell.

Different studies establish that exosomes are mediators of
intercellular communication, since they reach biological fluids
such as blood, cerebrospinal fluid and urine among others,
and act as paracrine messengers through the transference of
bioactive lipids, mRNAs, miRNA, lncRNAs, and can also transfer
genomic DNA and mitochondrial DNA and different proteins
(Kalra et al., 2012; Keerthikumar et al., 2016). This transference
of bioactive molecules establishing cell-cell communication
processes can in an epigenetic way, alter the activity of the cells

both in physiological and pathological conditions (Xiong et al.,
2017; Harting et al., 2018).

Interestingly, the evidence shows that exosomes are released
more under pathological conditions (Cheng et al., 2017). In
this way, the most studied pathogenic components that use
exosomes as infection route are the prion proteins (Vella et al.,
2008), responsible for transmissible neurodegenerative diseases
such as bovine spongiform encephalopathy and α-synuclein
(Emmanouilidou et al., 2010), involved in Parkinson’s disease
pathology. Prion diseases are fatal neurodegenerative disorders
associated with the conversion of the cellular prion protein
into the scrapie prion protein, an abnormal conformational
state that tends to form amyloid deposits in brain tissue
leading to dementia (Vingtdeux et al., 2012). On the other
hand, exosomes released from cells that have an overproduction
of α-synuclein can transfer this protein to normal cells and
promote the overproduction by alterations in the ESCRT
system that result in an increased exocytosis of exosomes
with α-synuclein (Spencer et al., 2016). In AD, it has been
proposed that exosomes have a key pathological function in
the progression of the disease, and are involved in Aβ and
tau dissemination, since an accumulation of exosomes has
been found in amyloid plaques (Rajendran et al., 2006) and
hyperphosphorylated tau tangles (Saman et al., 2012, 2014; Levy,
2017).

ALZHEIMER’S DISEASE

AD is themost common neurodegenerative disease characterized
by neuron loss and impairment of memory, cognition and
functions of daily living. In many cases, death results from
the loss of fine motor skills and incapacitation (Koelsch, 2017;
Mroczko et al., 2018). The main pathological markers of AD
are the accumulation of Aβ plaques and the formation of NFT,
composed of hyperphosphorylated tau protein (Eitan et al.,
2016). In early stages, these pathological changes are primarily
localized within the medial temporal lobe and are spread through
the neocortex (Braak and Braak, 1996).

Accumulation of Aβ in oligomers is one of the earliest
events in the disease process, occurring 10–20 years prior to
the onset of memory loss and other clinical symptoms (Reiman
et al., 2012). Amyloid plaque formation are the result of Aβ

peptides deposition that takes place in early endosomes, this
process involves sequential hydrolysis of the amyloid precursor
protein (APP) by β and γ-secretases (Rajendran et al., 2006).
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane
type I aspartyl protease that is located in endosomes as
an immature precursor protein, and later in lysosomes and
Golgi complex as a mature protein that catalyzes the initial
amyloidogenic cleavage at β-site of APP while the membrane-
associated 99 amino acid carboxyl-terminal fragment β remains
(Munro et al., 2016; Yan et al., 2016). The γ-secretase has been
identified as a multimeric protein complex containing presenilin
1, presenilin 2 associated with nicastrin, Aph-1 and Pen-2. The
carboxyl-terminal fragment β is cleaved by γ-secretase releasing
Aβ peptides (Sharples et al., 2008). The Aβ peptides released
have pathophysiological impacts on synaptic function through
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inhibition of transmission of the synaptic signal leading neuronal
death (Mroczko et al., 2018).

On the other hand, NFTs are formed by massive
accumulations of abnormal insoluble polymers, referred to
as paired helical filaments (Wischik et al., 1985, 1988). The main
structural component of this filaments is tau, a microtubule-
associated protein (Kosik et al., 1986). The physiological function
of tau is to stabilize microtubules in the cell cytoskeleton, an
activity regulated by its phosphorylation (Grundke-Iqbal et al.,
1986). It has been suggested that abnormal phosphorylation is an
early molecular event that may lead to a sequence of structural
changes in the tau molecule, such as conformational changes
like truncations (Luna-Muñoz et al., 2007) and is thought that
hyperphosphorylation and its aggregation are related to the
disassembling of neuronal microtubules, that consequently affect
axonal transport and result in cell death (Stoothoff and Johnson,
2005). Hyperphosphorylation of tau primarily occurs at Ser-Pro
or Thr-Pro motifs, suggesting that proline-directed kinases
such as the MAPK, GSK3β and CDK5 are directly involved
(Mandelkow et al., 1992; Baumann et al., 1993; Greenberg et al.,
1994). Other kinases are also able to modify the tau molecule,
including CAMK, PKA and PKC (Correas et al., 1992; Scott
et al., 1993; Ghosh and Giese, 2015).

Dissemination of Aβ and tau has been suggested to be
mediated through release of extracellular vesicles (EVs; Nath
et al., 2012). EV are small membrane vesicles which result
from the budding of the plasma membrane as microvesicles
(also called ectosomes) or from the exocytosis of MVB as
exosomes. EV is considered one of the distant extracellular
communication agents due to its capacity to carry and deliver
different types of components to target cells (Zhang and Yang,
2018). A relationship between EV and progression of AD has
been proposed because most of the Aβ and tau oligomers are
colocalized with late endosome/lysosome markers, mainly MVB
(Nath et al., 2012; Joshi et al., 2015). During disease progression,
both these histopathological hallmarks extend throughout the
brain with characteristic patterns reaching limbic and association
areas (Cho et al., 2016).

Role of Exosomes in Alzheimer’s Disease
Although the origin of the disease remains unknown, several
investigations have postulated prion-like mechanisms in
AD progression and dissemination, including direct cell
communication through gap junctions, synaptic transmission
and exacerbated paracrine signaling due to alterations of
endosomal/lysosomal secretion system, in which exosomes play
a fundamental role in the distribution of neuropathological
components between neuronal cells (Gauthier et al., 2017; Xiao
et al., 2017; Laulagnier et al., 2018).

Subcellular location of neuronal Aβ was identified using
immunoelectron microscopy by Takahashi et al. (2002), they
found that Aβ42 is localized predominantly within MVB of
the neurons. Accumulation of Aβ inside neurons is prevented
by autophagy, an event occurring in the endosomal/lysosomal
system where Aβ within endosomes are destroyed by lysosomes
(Mizushima and Komatsu, 2011). A key regulator of this system
is phosphatidylinositol-3-phosphate (PI3P), a phospholipid

synthesized mainly by class III PI3-kinase Vps34 (Jaber et al.,
2016). Miranda et al. (2018) showed that disruption of neuronal
Vps34 (a retromer complex component) function impairs
autophagy, lysosomal degradation as well as lipid metabolism.
This promotes the secretion of unique exosomes enriched with
undigested lysosomal substrates, including Aβ, APP and the
enzymes that process APP in an amyloidogenic way (Malm et al.,
2016). In addition, this accumulation increases with aging and
it is associated with abnormal synaptic morphology (Takahashi
et al., 2002). Overall, inhibiting neutral sphingomyelinase 2,
a key regulatory enzyme in ceramide synthesis and exosome
biogenesis, reduced the number of exosomes in the brain and
serum and further reduced Aβ plaque load in 5×FAD mice
(Dinkins et al., 2016). These observations suggest that MVB is
essential for APP metabolism and Aβ secretion (Takahashi et al.,
2002; Joshi et al., 2015). Furthermore, other studies demonstrated
that transference of damaged neuronal cell-derived exosomes
with APP, γ/β secretases, Aβ peptides, APP-CTF, ubiquitins,
modified ubiquitin ligases and tau protein to adjacent neurons
can lead to AD propagation (Chen et al., 2017; Yuyama and
Igarashi, 2017; Zheng et al., 2017; Miranda et al., 2018).

An interactome analysis demonstrated that inhibition of
γ-secretase activity results in a significant increase of exosomes
enriched with APP-CTF suggesting the association of γ-secretase
in exosome membrane. Also, it was shown that exosomes
tetraspanins CD9 and CD81 interact with the γ-secretase
complex regulating their activity in a positive way. Using
neutralizing antibodies against CD9 and CD81 result in the
disruption of Aβ generation and lead to an accumulation of
the APP-CTF (Wakabayashi et al., 2009). Likewise, tetraspanin
6 enrichment in exosomal membrane allows the accumulation
of Aβ, CTF-APP and BACE1 in exosomes, and independently
of ESCRT, increases biogenesis of exosomes and secretion of
this type of cargo, as well as inhibits the degradation of these
nanovesicles by the lysosomal system (Guix et al., 2017). Thereby,
these studies suggest the involvement of the tetraspanin web
protein in the up and down regulation of Aβ generation.

It has been reported that the endosomal localization
of BACE1 is regulated by the ACG sequence and the
retromer, a multiprotein complex required for the recycling of
transmembrane proteins from the endosomes to the trans-Golgi
network (Tan and Evin, 2012). Kizuka et al. (2015) showed that
BACE1 is modified with bisecting N-acetylglucosamine, a sugar
modification highly expressed in the brain of AD patients, by
GnT-III. They reported that lack of this modification directs
BACE1 to late/lysosomes where it is less colocalized with APP,
however, the glycan modification is protective for lysosomal
degradation.

Furthermore, the Aβ peptides already present in extracellular
space can interact with the exosomal membrane through
their glycosphingolipids and the cellular prion protein (PrPC),
forming aggregates of Aβ (Rajendran et al., 2006; Zappulli
et al., 2016; Yuyama and Igarashi, 2017; Zheng et al., 2017).
This was demonstrated in the histological analysis performed
in brains of AD patients were an enrichment of exosomal
markers Alix and flotillin-1 was found around neuritic plaques;
this suggested that exosomes function as nucleation centers
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for amyloid plaque formation (Xiao et al., 2017). A recent
publication by Falker et al. (2016) showed that PrPC is highly
enriched on exosomes membranes and distinct Aβ oligomers
bind PrPC with high affinity via its flexible N-terminus. This bind
drives Aβ fibrillation and may be involved in the extracellular
deposition of Aβ. However, there is a debate about if PrPC is
required for Aβ-mediated synaptotoxicity and suppression of
long-term potentiation (Lauren et al., 2009; Kessels et al., 2010).

On the other hand, it has been proposed that the spread of
tau can occur through neuronal synaptic connections, but the
mechanism underlying this process remains unknown (Wang
Y. et al., 2017). However, it also has been reported thatmonomers
and oligomers of tau hyperphosphorylated are encapsulated
within the exosomes (Shi et al., 2016), which are then transferred
through synaptic contact with other neurons, and like the
exosomes that interact with Aβ, can promote nucleation centers
for hyperphosphorylated tau aggregation (Saman et al., 2012,
2014).

In addition to neural cell interaction, exosomes from damaged
cells also interact with glial cells. Consequently, astrocytes
not only fail to support neurons but also generate a toxic
environment that is detrimental to neurons and astrocytes
themselves through promoting secondary apoptosis of adjacent
cells (Wang et al., 2012). Wang et al. (2012) found that the
astrocytic-mediated apoptosis is associated with the secretion of
PAR-4/ceramide containing exosomes in the adjacent cells even
if they were not exposed to Aβ. It has been demonstrated that
astrocytes tend to interact more with exosomes and accumulate
large amounts of Aβ42 protofibers, subsequently, this storage
results in endosomal/lysosomal system alterations which induce
exosome secretion with a neurotoxic cargo (Nikitidou et al.,
2017). Astrocyte-derived exosomes of patients with AD had up
to 20-fold higher concentrations of β/γ-secretase and sAPPβ

than neuron-derived exosomes (Goetzl et al., 2016). Moreover,
Chiarini et al., 2017 presented evidence showing that tau and
its hyperphosphorylated form are expressed by untransformed
astrocytes in culture exposed to Aβ, the release is mediated by
exosomes to the extracellular medium.

In addition, microglia also participates in the internalization
of exosomes derived from damaged cells, Ikezu et al. (2016)
found that microglia transduces tau aggregates into nearby
neuronal cells via exosome secretion, tau aggregates propagate
from cortical neurons to dentate granular cells and this
propagation is sensitive to exosome inhibition or microglial
depletion. In AD, Aβ phagocytosis by microglia is one
of the principal mechanisms for a level decrease of these
peptides. Exosome phagocytosis is a process mediated by
phosphatidylserine; as well as in apoptotic cells, exosomal
phosphatidylserine is found in the outer layer of the membrane,
so it can be recognized by microglia phosphatidylserine receptor
(Yuyama and Igarashi, 2017). However, in AD, microglia activity
is markedly diminished, therefore, when Aβ interacts with
exosomes, it initiates the formation of large aggregates in the
form of plaques (Zheng et al., 2017).

Since AD has a long asymptomatic latency period, many
investigators are searching for biomarkers that can detect the
disease early on, particularly in its pre-symptomatic and early

stages. Different studies show that deregulation in miRNA
expression and its traffic via exosomes has repercussions on AD
pathogenesis (Lugli et al., 2015). miRNAs are endogenous, short,
noncoding RNAs of 18–25 nucleotides which act as important
post-transcriptional regulators of gene expression by binding
with their target mRNA (Liu C. G. et al., 2014). Currently
there are about 2,650 different miRNAs identified in all human
tissues and only 34–40 miRNA are abundant in the brain (Jaber
et al., 2017), among them, there are different miRNAs that
bind specifically to key genes that determine the expression of
APP and β-secretase, such as miR-193b, miR-101 and miR-29c
respectively, these miRNAs negatively influence the generation
of Aβ (Lei et al., 2015; Chen et al., 2017). Nevertheless, it has
been found that expression of these miRNAs decreased with
AD progression (Liu C. G. et al., 2014). Lugli et al. (2015)
performed an exosomal miRNAs analysis samples of people with
AD and control people. They indicated that 20 miRNAs showed
differential expression in AD, and miR-342-3p, miR-141-3p,
miR-342-5p, miR-23b-3p, miR-24-3p, miR-125b-5p and miR-
152-3p were selected as most predictive for AD group identity.
Furthermore, miR-9, miR-125b, miR-191-5p, miR-181c and let-
7g-5p are thought to be the best candidates for early biomarkers
(Trotta et al., 2018).

As mentioned above, defects in protein transport are
closely related with neurodegeneration. In this context, it
has been reported that genes like SEC22B and SEC63 which
participate in protein transport and regulation of cell motion
are downregulated by miR-206 in the AD, the increase of this
miRNA leads to a disequilibrium of proteostasis in the brain that
could result in Aβ accumulation (Zhao et al., 2016b).

On the other hand, it has been shown that the miR-132/miR-
212 cluster regulates tau expression. Smith et al. (2015) showed
that miR-132/miR-212 deficiency in mice leads to increased
tau expression, phosphorylation and aggregation, an effect
associated with an autophagy dysfunction. Conversely, treatment
of AD mice with miR-132/miR-212 restore, in part, memory
dysfunction and tau metabolism.

Some miRNAs like miR-139 over express in AD, this
overexpression impairs the hippocampus-dependent learning
and memory formation by targeting the cannabinoid receptor
type 2 (Tang et al., 2017), a membrane marker of activated
microglial cells, which triggers pathophysiological events
involved in synaptic plasticity and neuroprotection but is also
implicated in diverse roles in regulating memory, depending on
memory types and brain areas (Li and Kim, 2016).

However, due to the high degree of heterogeneity in miRNAs,
further in-depth investigation is required to provide easily
identifiable biomarkers of AD that can be isolated from blood
or its components. It is also important to consider is the
possibility of using miRNA approaches like the modulation of
these miRNAs for the treatment of AD.

FOCUS ON MSC-DERIVED EXOSOMES
AND THEIR ROLE IN NEUROPLASTICITY

MSCs have multipotent mesodermal differentiation potential,
but more importantly, they have demonstrated the ability
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to promote tissue repair through the release of paracrine
factors, mainly a variety of growth factors, immunomodulatory
cytokines and other trophic mediators, which make them an
attractive therapeutic strategy for applications in inflammatory
and chronic-degenerative diseases (Donders et al., 2018). In
general, administration of MSCs or conditioned media from
MSCs induce structural and functional benefits that reduce
apoptosis at the lesion site, module proinflammatory response,
provide a permissive environment for axonal extension, enhance
neurogenesis and ameliorate neurological deficits (Cantinieaux
et al., 2013; Qu and Zhang, 2017; Harris et al., 2018).

The composition of exosomal cargo determines the
therapeutic potential of exosomes, and the fact that these
vesicles were produced by cells with a therapeutic activity
already described (like MSCs), increases this potential. Besides,
MSCs are the most efficient exosome producing cells (Hall
et al., 2016). Based on these facts and the paracrine hypothesis
which establishes that the beneficial effect of stem cell therapy
is due to stimulation of resident cell by secretion of bioactive
molecules and release of EV, the use of exosomes could offer
several advantages over MSCs such as a superior safety profile.
Since these vesicles do not replicate they are exempted from
uncontrolled division, unlike MSC, which during its isolation
and expansion there is a risk of genetic damage which can lead to
proliferation issues and spontaneous differentiation promoting
tumor formation. Furthermore, exosomes lack metabolism,
so the environment where they are administered will have no
impact, also, they have a nanometric size, which decreases the
possibility of microvascular thrombotic events, they can be
sterilized by filtration, can be stored for long periods without
presenting functional loss, and above all, have similar effects to
those that MSCs exert with no side effects (Nakano et al., 2016;
Ophelders et al., 2016; Gomzikova and Rizvanov, 2017; Xiong
et al., 2017).

Many studies have shown that exosomes derived from
MSCs can reduce cognitive problems associated with various
neurological disorders models such as Traumatic Brain Injury
(TBI; Xiong et al., 2017), Parkinson’s disease and stroke (Yang
Y. et al., 2017). It has been hypothesized that these vesicles act
as paracrine activity effectors of MSCs by encapsulating and
transferring many functional factors, including regulatory RNAs,
proteins and lipids, however, exosome release is considered a
cellular adaptation mechanism and its composition, biogenesis
and secretion will depend on microenvironment with which cells
interact (Xin et al., 2017a). An example of this cellular adaptation
was reported by Harting et al. (2018) in a coculture of MSCs
with ischemic tissue extracts, which demonstrated that MSCs can
respond to an inflammatory stimulus by producing exosomes
with a high anti-inflammatory capacity.

Recent studies show that proteins and regulatory RNAs
within MSC-derived exosomes have synergistic effects in crucial
processes such as metabolism, neuroinflammation, migration
of cellular precursors and processes related to angiogenesis,
neurogenesis and synaptogenesis, all activated after injuries
(Nakano et al., 2016; Börger et al., 2017; Collino et al., 2017). In a
study conducted by Li et al. (2017) in a TBImodel, it was reported
that dental pulp MSC-derived exosomes alter M1 microglia

polarization and promote the transition to M2 phenotype.
The M1/M2 transition inhibits the proinflammatory activity
of M1 and increases M2 production of anti-inflammatory
factors, which decreases neuroinflammation and promotes the
functional recovery of rodents; however, the mechanisms that
mediates these events remains unknown (Xin et al., 2013a;
Doeppner et al., 2015; Li et al., 2017). Nakano et al. (2016)
showed that neurological alterations caused by streptozotocin
are restored by administration of MSC-derived exosomes,
nevertheless, it was reported that there was no generation of
new neurons, instead, these vesicles restore and protect the
function of remaining neurons by increasing neuritic density and
inhibiting oxidative stress damage, mainly lipid peroxidation of
neuronal membranes.

In the last years, different studies demonstrated that
MSC-derived exosomes promoted neurogenesis in different mice
models of disease (Xin et al., 2013b; Doeppner et al., 2015;
Zhang Y. et al., 2017). In these studies, treatment with exosomes
increased the number of new-born neurons in neurogenic
niches (the subventricular zone (SVZ) and dentate gyrus (DG)).
However, the concrete cellular and molecular mechanism of this
neurogenic process still unclear.

This demonstrates the multimodal therapeutic capabilities of
the MSC-derived exosomes as MSC paracrine activity effectors,
although the mechanisms remain unknown.

MSC-Derived Exosomes miRNAs
As mentioned above, exosomes can transfer different RNAs
to adjacent cells. Among RNAs, miRNAs are the most widely
studied (Cheng et al., 2018). miRNAs are a class of non-coding
RNAs that functionally inhibit their respective messenger
RNAs target by binding to the 3′ untranslated regions (3′

UTR) and are implicated in many biological processes such
as embryonic development, proliferation, differentiation and
apoptosis (Stevanato et al., 2016). It has been described that
approximately 60% of genes are more than 1,000 miRNAs
targets, and 70% of those miRNAs are expressed in the brain,
where they regulate different neural and glial functions (Lei et al.,
2015). Also, it was demonstrated that the proportion of miRNA
is higher in exosomes than in their parent cells (Zhang et al.,
2015). The number and type of miRNA within the exosomes
is not a random process, instead, the cells selectively group the
miRNAs, however, the process of packing RNAs into exosomes
is poorly understood (Stevanato et al., 2016). Nevertheless,
there are potential ways of sorting miRNAs into exosomes like
the neural sphingomyelinase 2, the miRNA induced silencing
complex and the miRNA motif sumoylation pathways, however,
the underlying mechanisms remain unclear (Zhang et al., 2015).

Several in vitro and in vivo studies indicate that MSC
exosomes transfer functional miRNAs to neural cells and
promote neuritic remodeling and plasticity, as well as inhibit
apoptosis, which subsequently promotes functional recovery
(Xin et al., 2013b, 2017b; Cheng et al., 2018). Few studies have
identified a single exosome cargo component that contributes
to observed effects (Börger et al., 2017). For example, Xin et al.
(2017b) demonstrated that exosomes enriched with miR-133b
promote neurovascular plasticity and also reported that this
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miRNA increases secondary release of exosomes from astrocytes,
which considerably enhances neuritic growth, however, they do
not exclude the possibility that other cells are influenced by
miR-133b. Baglio et al. (2015) analyzed MSC miRNA profiles of
bone marrow and adipose tissue, among these miRNAs, there
are some that are involved in MSC biology, such as miR-486
that regulates cellular senescence, or miR-143 with a key role in
MSC immune response modulation, additionally, other miRNAs
were identified, such as miR-191, miR-222, miR-21 and let-7a
related to cell cycle progression, proliferation and angiogenesis
modulation (Chen et al., 2010; Clark et al., 2014; Baglio et al.,
2015).

On the other hand, it has been reported that exosomes
also contain miR-98, miR-155 and miR-125a which have
antiapoptotic activity (Ma et al., 2016; Cheng et al., 2018). Cheng
et al. (2018), showed that in chronic inflammation and apoptotic
conditions, miR-21 levels decrease considerably, however, MSCs
in this condition secrete exosomes with high levels of miR21,
which reduce apoptosis of cells that are in an environment
of chronic inflammation. Furthermore, they demonstrated that
miR-21 can bind to messenger RNA 3′ UTR of PTEN, main
inhibitor of the PI3K/Akt survival pathway in apoptosis mediated
by p53 and phosphatidylinositol. Therefore miR-21 possibly
promotes cell survival by inhibiting PTEN during apoptosis,
triggering the activation of Akt and Bcl-2 and the decrease of Bad,
Bax and caspase-3, eventually inhibiting apoptosis.

The miRNA-miR-17-92 cluster, formed by miR-17, miR-
18a, miR-19a, miR-19b, miR-20a and miR-92a, has shown
to be implicated in neuritic remodeling and neurogenesis as
established by Xin et al. (2017a). This cluster, like miR21,
targets PTEN, allowing the activation of Akt and mTOR,
which phosphorylate GSK-3β, inhibiting its function. GSK-3β
inactivation has been reported to stimulate axonal growth and
central nervous system recovery (Eldar-Finkelman andMartinez,
2011; Xin et al., 2017a).Moreover, it has been described thatMSC
exosomes assist in neural differentiation by miR-124 delivering
to neural precursor cells (NPCs). This miRNA suppresses
Sox9 expression, implied in NPC multipotent capacity and
maintenance, hence the effect ofmiR-124 on Sox9 promotes NPC
differentiation (Lee et al., 2014; Yang J. et al., 2017).

UnderstandingmiRNA-regulatedmolecular mechanisms and
their impact on the brain can likely be translated into therapies
with positive clinical impact for AD and other neurodegenerative
disorders in the future.

MSC-Derived Exosomes Proteins
Similar to miRNAs, proteins from exosomal cargo are important
effectors of these vesicles. Currently, more than 900 proteins
have been identified within MSC-derived exosomes (Kalra et al.,
2012; Keerthikumar et al., 2016). Exosomal proteins can act as
signaling molecules, receptors, cell adhesion molecules among
other functions. For example, the expression of proteins such as
nestin, neuro-D, growth-associated protein 43, synaptophysins,
VEGF, FGF promote events such as neural development,
synaptogenesis and angiogenesis (Chopp and Li, 2002). Katsuda
et al. (2013) indicated that MSC exosomes from adipose tissue
contain neprilysin, an enzyme capable of degrading Aβ, and in

co-culture with cells designed for Aβ exacerbated production,
these exosomes significantly reduced levels of Aβ1–40 and 1–42.

In different neurodegenerative disease models, it has been
reported that MSCs interact with NPC in neurogenic niches
of SVZ of lateral ventricles and the hippocampus DG through
exosomes (Lee et al., 2013; Zhang and Chopp, 2015; Xin et al.,
2017b; Yang Y. et al., 2017). However, the mechanisms by
which exosomes interact with NPC and modify their behavior
to promote neurogenesis, among other neuroplastic events,
have not yet been determined. Nevertheless, some authors have
associated some components with the activation (see Table 1),
of the chemokine ligand (motif cc) 2 (CCL2), that functions as
a neuronal activity modulator. MSCs release CCL2 to stimulate
proliferation, migration and differentiation of NPC to neural and
glial cells (Liu et al., 2007; Lee et al., 2013).

Another identified component is Sirtuin1 (SIRT1), which
regulates transcription factors and cofactor deacetylation
involved in angiogenesis, inflammation, response to oxidative
stress and in neural development, associated with NPC
proliferation and differentiation (Hu et al., 2014). SIRT1 forms a
complex with Hairy/enhancer of Split 1 (Hes1), a transcriptional
repressor of Mash1, responsible for the activation of neuronal
specific transcription program. Under oxidizing conditions,
this SIRT1/Hes1 complex deacetylates Mash1 promoter
and recruits other co-repressors such as TLE1, which block
neuronal differentiation, whereas under reducing conditions
the SIRT1/Hes1 complex is not formed, therefore Hes1 recruits
transcriptional activators such as the CREB binding protein to
the Mash1 promoter, resulting in a neural destiny of NPC (Libert
et al., 2008).

McBride et al. (2017) found that MSC-derived exosomes
transport Wnt3a proteins associated with the outer face of
the exosomal membrane. This allows the activation of the
Wnt/β catenin signaling pathway, the main canonical signaling
process that regulates adult neurogenesis (Yin et al., 2007).
It has been reported that this signaling increases in the
hippocampus DG after the administration of MSC in TBI models
and improves cognitive deficits, as a result of potentiation of
neurogenesis. It has been described that this signaling increases
in hippocampus DG after MSC administration in TBI models
and improves cognitive deficits, associated with the potentiation
of neurogenesis (Zhao et al., 2016a; McBride et al., 2017). Wnt3a
and its active form β-catenin expression promote NPC expansion
and differentiation into synaptically active neurons, whereas the
absence of Wnt3a inhibits the differentiation of NPC to neurons
(Yin et al., 2007).

Rodriguez-Grande et al. (2015) studied the effect of Pentraxin
3 (PTX3) protein on neurogenesis using a stroke model and
reported that PTX3 is a key regulator of angiogenesis and
neurogenesis, however, the molecular mechanisms involved have
not been described yet. PTX3 is a protein with direct involvement
in neuroinflammation in acute phases (Ummenthum et al.,
2016). The inhibition of PTX3 reduces the number of capillaries
in reperfusion areas after ischemia as well as the formation of new
neurons (Rodriguez-Grande et al., 2015).

In the exosomal cargo, ephrins, are a pivotal regulator of the
developmental process of axon guidance, cell migration, synapse
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TABLE 1 | Polypeptides identified in exosomes derivate from Mesenchymal Stem Cells (MSC).

Protein name Gene UniProtKBa Acc. No. MWb (kDa) pIC

1. C-C motif chemokine 2 (CCL2) CCL2 P13500 11.02 9.40
2. NAD-dependent protein deacetylase sirtuin-1 SIRT1 Q96EB6 81.68 4.55
3. Protein Wnt-3a WNT3A P56704 39.36 8.52
4. Pentraxin-related protein PTX3 PTX3 P26022 41.97 4.94
5. Thrombospondin-1 THBS1 P07996 129.38 4.71
6. Growth/differentiation factor 15 GDF15 Q99988 34.14 9.79
7. Cell division control protein 42 CDC42 P60953 21.25 6.16
8. Dihydropyrimidinase-related protein 2 DPYSL2 Q17555 62.29 5.95
9. Prosaposin PSAP P07602 58.11 5.06
10. Brain-derived neurotrophic factor BDNF P23560 27.81 9.01
11. Nerve growth factor NGF P01138 26.95 9.94
12. Fibroblast growth factor 2 FGF2 P09038 30.77 11.18
13. Stromal cell-derived factor 1 CXCL12 P48061 10.66 9.92
14. Ephrin A-2 EFNA2 O43921 23.87 6.99
15. Vascular endothelial growth factor VEGFA P15692 27.04 9.21
16. Microtubule-associated protein tau MAPT P10636 78.92 6.25
17. Beta-secretase 1 BACE1 P56817 55.76 5.31
18. Amyloid-beta A4 protein APP P05067 86.94 4.73
19. Prion protein PRNP P04156 27.66 9.13
20. CD81 CD81 P60033 25.80 5.09
21. Tetraspanin-6 TSPAN6 O43657 27.56 8.44
22. CD9 CD9 P21926 25.41 6.80
23. Neutral sphingomyelinase 2 SMPD3 Q9NY59 71.03 5.52
aUniProtKB Acc. Numb., UniProt Knowledgebase Accession Number. bMW, Molecular weight. CpI, Isoelectric point.

formation and vascular formation but it is unknown the role they
play in the adult organism (Wilkinson, 2001), to this account
Holmberg et al. (2005) studied the role of A-class ephrins in the
neural stem cell niche, and reported that ephrin-A2 (EFNA2)
negatively regulates neural progenitor proliferation. Lack of
expression EFNA2 and its receptor Eph7A result in active and
ongoing neurogenesis, suggesting that neural cell replacement
therapies may be achieved by modification of ephrin signaling
pathways.

Dihydropyrimidinase-like 2 (DPYSL2) best known as
collapsing response mediator protein 2 also is found in the
exosomal cargo. DPYSL2 is a member of a family named for
their roles in axonal growth cone collapse. Its main function
is stabilizing microtubules, promoting neuritic outgrowth and
modulating signaling processes (Pham et al., 2016). In the process
of NPC senescence, the expression of DPYSL2 decreases with the
age, consistent with the involvement in the neurodegeneration
processes (Wang et al., 2016).

Prosaposin (PSAP) is another protein found in exosomes (Li
et al., 2010). PSAP is suggested to be an essential neurotrophic
factor since its secretion stimulates proliferation and maturation
of immature neurons in the hippocampus DG, as well as
provides protection against apoptosis. It was reported that
deficiency of PSAP precedes massive neuronal loss in neurotoxic
environments (Morishita et al., 2014; Nabeka et al., 2017).

It has been recently demonstrated that THBS1 is present
in the secretome of MSC and exosomes (Maumus et al.,
2017). Blake et al. (2008) show that thrombospondin-1
(THBS1) is a physiological ligand for ApoER2 like Reelin.
This study demonstrated that the first alternative physiological
ligand for ApoER2 and VLDLR is capable of inducing
Dab1 phosphorylation, but no other key events of the Reelin
signaling pathway. Blake et al. (2008) also showed that

THBS1 increases the length of neuronal precursor chains and
stabilizes the structure of established chains along the rostral
migratory stream. These functions of THBS1 in neuronal
migration could help replace neural cells in injured zones and
ameliorate neurological deficits through the administration of
exosomes.

An analysis of a bioinformatic database was performed in
order to identify and classify exosomal cargo of MSC according
to their biologic function and their interaction in the secretome.
The 23 proteins described in Table 1 were classified by Protein
Analysis Through Evolutionary Relationships (PANTHER)
system (Mi et al., 2017) and were grouped according to their
involvement in the different cellular biological processes. In
this first approach, we found 12 different biological processes
(Figure 1; a protein can participate in more than one cellular
process). From these 12 biological processes, four main groups
are mentioned as; (a) cellular processes with 17 members;
(b) response to a stimulus with 12 members; (c) biological
regulation with 11members; and (d) development processes with
nine members.

In the cellular processes group, there are 13 proteins involved
in cellular communication and four proteins with a role in
the movement of cellular components. The main proteins
implicated in cellular communication are members of CXC
chemokine family such as CCL2 (UniProt code P13500) and
CXCL2 (UniProt code P19875; The UniProt Consortium, 2018).
A recent work in murine models of neurodegeneration has
associated these two proteins in cellular migration processes and
enhanced proliferation and differentiation of neural precursors
(Hong et al., 2015; Wang F. et al., 2017). In addition,
another member of this family, CXCR4 expressed by neurons
(UniProt code P61073) has been linked to inflammatory
processes by activating microglia expressing CCR2 (UniProt
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FIGURE 1 | Functional classification with PANTHER of the polypeptides found in exosomes. The UniProtKB IDs of proteins were submitted to the PANTHER
database for their classification in Gene Ontology (GO) according to Biological. X-axis, categories of proteins. Y-axis, number of genes contained in each category.

code P41597; Liu C. et al., 2014). One study showed that
knockout of CCR2 in an AD transgenic mouse model decreases
microglia activation and increases Aβ accumulation (Kiyota
et al., 2013). This demonstrates the role of microglia in
Aβ clearance and how its deficiency could speed up AD
progression.

The secondmost important biological process was response to
stimuli, mainly the regulation of protein phosphorylation, where
the neurotrophic factors VEGF (UniProt code P15692), NGF
(UniProt code P01138) and BDNF (UniProt code P23560) that
modulate cell death cascades, increase production of proteins
responsible for proliferation and maintenance of neurons.
These factors also have roles in the outgrowth of dendrites
and stabilizing synapses between neurons. In recent years,
these neurotrophins have been considered as key regulators
of adult neurogenesis and the changes in expression have
been related to occurrence and development of cognitive
impairments, even though the molecular mechanism is not
completely elucidated (Ke and Zhang, 2013; Budni et al., 2015;
Vilar and Mira, 2016). However, more data and support are
needed to elucidate the mechanisms of neurotrophin imbalance
and dysregulation in AD as well as possible therapeutic
applications.

On the other hand, the main molecular functions identified
for these molecules are related to catalytic activity, signal
transduction and protein binding. In these cases, protein binding
activity is the most representative molecular function for
12 proteins implied. In this group neurotrophins can also be
found, due to their activity, which is mediated mainly by receptor
phosphorylation which subsequently promotes the expression of
proteins involved in the proliferation of the NPC, maintenance

of the cell and ensuring neuronal survival (Bolijn and Lucassen,
2015).

This classification allowed us to generate a network of known
and predicted protein-protein interaction using the STRING
program (Szklarczyk et al., 2017). The interactome network
represented in Figure 2 describes the interactome with a
minimum required interaction score of 0.70 (high confidence)
and highlights the biological processes in the regulation of axon
extension (shown in red) with seven members in it and a false
discovery rate (FDR) of 4.78e−09.

The second most important process for our analysis is
axonogenesis with 10 members and an FDR of 8.91e−08, shown
in blue. Interesting members related to axonogenesis are tau
(MAPT UniProt code P10636) and cell division control protein
42 (CDC42 UniProt code P60953). It is known that tau is
accumulated in the growth cone and its presence persists during
the axonal elongation, however, understand the role of tau
in axonogenesis is complicated because tau exists in different
phosphorylation states and these states influence the subsequent
localization of tau within neurons without implication of its role
in the progression of AD (Zmuda and Rivas, 2000). CDC42 has
roles in axon guidance and neurite formation particularly
on growth cone through Robo signaling activation and actin
filaments regulation (Matsuura et al., 2004). The CXCL12 and
the neurotrophins BDNF and NGF are also associated with
axonogenesis. Almost all proteins exert their function by acting
as ligands (shown in green with an FDR 4.02e−08).

The proteins of interactome network are usually found in the
extracellular space (shown in pink with an FDR 1.8e−06) where
they can modulate the processes like the responses to stimuli
previously described. The main pathway of this interactome
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FIGURE 2 | Interactome of polypeptides found in common exosomes related with a beta and tau protein. UniProtKB accession numbers were submitted to the
String program to identify the predicted functional network. Lines in color represent different pieces of evidence for each identified interaction: red line, fusion; green
line, neighborhood; blue line, cooccurrence; purple line, experimental; yellow line, text mining; light blue line, database; black line, coexpression.

network was the Rap1 signaling pathway (FDR 2.3e−05) which
has been reported to regulate vesicle secretion, cytoskeletal
dynamics, proliferation and cell adhesion, (Shibasaki et al., 2007;
van Hooren et al., 2012; Zhang Y.-L. et al., 2017). Possibly this
way of signaling supports the delivery of the exosomal cargo.

On the other hand, it is interesting that VEGF participates in
all analyzed processes. It has been reported that this neurotrophic
factor evokes elements of brain plasticity like neurogenesis
and neural progenitor cells migration (Chen et al., 2005).
According to the interaction diagram, VEGF has synergistic
effects with some neurotrophins and with components that
mediate axonal guidance such as CDC42 and THBS1 (UniProt
code P07996). This leads us to think that possibly the synergy
of the exosomal cargo promotes better therapeutic responses
compared to those that a single isolated component could. It
would be important to study the effects of the composition
of the exosomal charge on the progression of AD in both

interactions with Aβ and the tau protein, as well as the effects
it could have on neuroplastic events, mainly neurogenesis and
synaptogenesis.

CONCLUSION AND PERSPECTIVES

Despite the great advances in AD research, the molecular
mechanisms underlying this devastating disease have not been
fully unveiled. However, remarkable neuropathological studies
have provided the largest contribution to the knowledge of the
mechanisms involved in the pathological amyloidogenic
processing of Aβ as well as hyperphosphorylated tau
aggregation into paired helical filaments. Unfortunately,
there remains a need to find an accurate diagnosis, in
addition to generating really effective treatments; thus, it is
necessary to use novel approaches to understand the molecular
and cellular mechanisms of AD in order to identify new
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therapeutic strategies that allow to delay, reverse or, in the
best case, to avoid the normal pathological processing of this
disease.

The use of proteomic study technologies plus the advent of
induced pluripotent stem cells and three-dimensional culture
technologies, has made it possible to generate novel in vitro 3D
neural cell culture models that replicate AD pathologies, allowing
us to explore new perspectives on the origin of the disease and
its progression, for example the influence of some proteins in
the misfolding of Aβ and the tau protein and its resistance to
degradation. These in vitro 3D neural cell culture models also
could explore the biochemical composition and modulation of
exosomes and their role in disease progression. These advances
have revolutionized the potential to generate novel platforms
that can be used to study the mechanisms of pathology or to
develop novel diagnostic and therapeutic tools in a brain-like
environment.

Currently, MSC therapy has emerged as a promising strategy
for treating different neurodegenerative disorders via tissue
repair, however, the risks of tumor formation, cellular rejection
and thrombosis in MSCs transplantation remain unresolved.
Currently, the cell-free therapy using MSC-derived exosomes
might constitute an alternative because of their advantages over
MSCs. There are different studies indicating that exosomes
act as an important mediator of the information exchange
between MSCs and NPC. The exchange of miRNA and
proteins between cell to cell through exosomes can reduce
the neuroinflammation, promote neurogenesis and angiogenesis
rescue learning impairments and improve functional recovery.
However, the concrete mechanisms involved in the positive
effects induced by MSCs-derived exosomes in AD are still
unclear. Given a variety of functions and multiple molecules
in exosomal cargo, is necessary that other studies analyze all

interaction and understand the relation between the intrinsic
potential that is glimpsed in the combination of the use
of exosome therapy and the participation of their cargo
(miRNA and/or proteins) combined with the proteomic and
bioinformatic analysis of those pathways that participate in this
therapeutic modulation.

The bioinformatic analysis performed, allowed us to focus
on possible candidates with an important role in neurogenesis
and neuroplasticity or even identify some potential pathways
implicated in AD’s patient’s progress. This would allow us to
use exosomes with different therapeutic approaches, for example,
the modification of exosomes with some classes of proteins or
miRNAs, with effects on tissue repair, maintenance of cellular
homeostasis or impairing the disease progression.
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